
Cryptanalysis of Caesar Cipher 
 

Malgorzata Kupiecka 

 
 
 
 
1.Introduction 
 
 
Caesar Cipher is the most important one in cryptology. Take any book on the subject, you 
are sure to find its description right in the first chapter. 
 
As there are no unbreakable ciphers[Bro98], we have tried to attack it. 
 
For the specification of the cipher, the reader is referred to [Sue110]. 
 
2. Differential Cryptanalysis of Caesar Cipher 
 
2.1. Differential Cryptanalysis of Caesar Cipher in Z26 
 

 
In differential cryptanalysis we try to recover the secret key, exploiting the relations 
between differences in an input and the resultant differences at the output of the cipher.  
 

We have begun with creating a standard tool used in differential attacks, i.e. evaluating the 
difference distribution table of the cipher [Hey99] for all possible input differences in Z26. 
 
To see where the entries in our table come from, let us analyse what happens for an input 
difference equal to 3. 
An input difference equal to 3 can come from 26 plaintext pairs listed below: 
(a,d), (b,e), (c,f), (d,g), (e,h), (f,i), (g,j), (h,k), (i,l), (j,m), (k,n), (l,o), (m,p), (n,q), (o,r), 
(p,s), (q,t), (r,u), (s,v), (t,w), (u,x), (v,y), (w,z), (x,a), (y,b), (z,c). 
 
For key k=0, this gives us following ciphertext pairs: 
(a,d), (b,e), (c,f), (d,g), (e,h), (f,i), (g,j), (h,k), (i,l), (j,m), (k,n), (l,o), (m,p), (n,q), (o,r), 
(p,s), (q,t), (r,u), (s,v), (t,w), (u,x), (v,y), (w,z), (x,a), (y,b), (z,c). 
The output difference is in all 26 cases equal to 3. 
 
For key k=1, we get: 
(b,e), (c,f), (d,g), (e,h), (f,i), (g,j), (h,k), (i,l), (j,m), (k,n), (l,o), (m,p), (n,q), (o,r), (p,s), 
(q,t), (r,u), (s,v), (t,w), (u,x), (v,y), (w,z), (x,a), (y,b), (z,c), (a,d). 
Again, the output difference is 26 times equal to 3. 
 
For key k=2: 
(c,f), (d,g), (e,h), (f,i), (g,j), (h,k), (i,l), (j,m), (k,n), (l,o), (m,p), (n,q), (o,r), (p,s), (q,t), 
(r,u), (s,v), (t,w), (u,x), (v,y), (w,z), (x,a), (y,b), (z,c), (a,d), (b,e). 
The output difference is 3 for all 26 pairs. 
 
The results for keys k=3,4,5,...,25 also give us the output difference of 3, 26 times for each 
key. 



We can see, that for an input difference equal to 3, there are together 26*26=676 output 
differences of 3, and zero output differences of other values. 
 
We repeat this process. Carefully checking all possible keys with all remaining possible input 
differences, we get a surprising result: 
 
∆OUT 
∆IN 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

4 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

9 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

12 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 0 

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 676 

 
 
Now, if we try to attack the cipher, given the input difference of 3, and a ciphertext pair (f,i) 
we know that the following plaintext pairs are possible: 
(f,i), (g,j), (h,k), (i,l), (j,m), (k,n), (l,o), (m,p), (n,q), (o,r), (p,s), (q,t), (r,u), (s,v), (t,w), 
(u,x), (v,y), (w,z), (x,a), (y,b), (z,c), (a,d), (b,e), (c,f), (d,g), (e,h); all with the same 
probability. 
 
The possible keys are respectively: 
k=0, k=1, k=2, k=3, k=4, k=5, k=6, k=7, k=8, k=9, k=10, k=11, k=12, k=13, k=14, 
k=15, k=16, k=17, k=18, k=19, k=20, k=21, k=22, k=23, k=24 and k=25. 
 
This is however the entire key space, which means that we haven’t obtained any new 
restrictions on key values. Therefore we  cannot get this way any additional information  
about the secret key. 
 
Notice, that Caesar Cipher’s resistance against differential cryptanalysis is in this case 
remarkably better than in the case of many modern ciphers, like AES. 
 
 
 



2.2. Differential Cryptanalysis of Caesar Cipher – case of  Z2 
 
The situation changes, if we use ASCII codes and operations in Z2. 
The difference between 'a' = 01100001 and 'b' = 01100010 is now not 1, but 11b = 3 
We get another very interesting  difference distribution table, shown in Appendix A. 
 
For instance, given the input difference of 5 = 101b, and a pair of ciphertexts 'g' and 'j', 
we have only a limited number of possibilities for plaintext pairs: 
 

p1= a, p2 = d, key=6, 

p1= c, p2 = f, key=4, 
p1= d, p2 = a, key=6, 

p1= f, p2 = c, key=4, 

p1= I, p2 = l, key=24, 

p1= k, p2 = n, key=22, 
p1= l, p2 = i, key=24, 

p1= n, p2 = k, key=22, 

p1= q, p2 = t, key=16, 

p1= s, p2 = v, key=14, 
p1= t, p2 = q, key=16, 

p1=v, p2=s, key=14, 
 
That means, only 23% of keys are possible. With another pair we can further decrease 
the number of possible keys. 
In some cases, this attack can have a slightly better complexity than a brute-force search. 
 
Despite this small weakness we claim, that Caesar Cipher was designed to be pretty secure 
against differential attacks. That leads us to an astonishing conclusion, that differential 
cryptanalysis was known already in Roman Empire. 
 
 
3. Linear Cryptanalysis of Caesar Cipher 
 
In this section, we use binary variables; input variables are denoted by xi. Each letter 
corresponds to its 8-bit ASCII code, with MSB denoted by x0.

#  According to the cipher's 
specification [Sue110], only letters 'a' - 'z' are used. 
 
Ex. 'a' corresponds to x0=0,x1=1, x2=1, x3=0, x4=0, x5=0, x6=0, x7=1. 
 
Output variables are denoted by yi (y0,..,y7), and key variables - by ki (k0,..,k4) 
 
We have found some linear equations  [Hey99]  of xi,yi and ki, holding with probability not 
equal to ½. 
 
With the notation given above, the linear approximations are as follows: 
 
a)  k4+k2+y5+y6+x7 = 0   holding with probability 0,454 
b)  k4+k3+y7+y6+x4+x5 = 0   holding with probability 0,476 
 
The first relation allows an attack with about 240 pairs ciphertext-plaintext, with probability of 
success 92 %. The attack would allow to recover 2 key bits. There remains however an open 
problem – how to find so many different pairs. 
 
Linear attacks do not seem promising for us. As in the previous case - no attack with 
complexity better than brute-force attack has been discovered so far. 
Again, we have to state, that linear cryptanalysis must be over 2 000 years old and was 
practiced already in ancient Rome. 
 
 

                                                 
#
 why not 



4. Algebraic attacks on Caesar Cipher 
 
This approach is quite a new idea, so we only present here some statements based on our 
intuition*, without going into further details. 
 
We suspect, that the cipher could be somehow described by a system of multivariate very low 
degree equations. We also think, that both the number of such equations and their degree 
would allow an efficient attack, probably with the help of some good Gröbner bases 
algorithm, like F4**,  for solving such systems. 
 
We hope, the complexity of such an attack could be significantly better than the brute force 
search of the entire key space.  We are currently working on this subject. 
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*
 Yes, I’m a woman.  
**
 In other notation GF(2

2
) 



Appendix A 

 
DIFFERENCE  (XOR) DISTRIBUTION TABLE FOR CAESAR CIPHER 

 

XOR 

OUT                                

XOR IN 
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1
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1
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1
1
0
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1
1
1
0
1
 

1
1
1
1
0
 

1
1
1
1
1
 

00000 676 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

00001 0 288 0 168 0 0 0 72 0 0 0 0 0 0 0 48 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 24 

00010 0 0 288 0 0 0 144 0 0 0 0 0 0 0 96 0 0 0 0 0 0 0 0 0 48 0 0 0 0 0 48 0 

00011 0 168 0 148 0 60 0 72 0 0 0 0 0 40 0 48 0 0 0 0 0 0 0 0 0 20 0 24 0 20 0 24 

00100 0 0 0 0 242 0 0 0 0 0 0 0 154 0 0 0 0 0 0 0 0 0 22 0 0 0 44 0 88 0 22 0 

00101 0 0 0 60 0 122 0 66 0 0 0 30 0 78 0 44 0 0 0 0 0 10 0 10 0 24 0 42 0 54 0 32 

00110 0 0 144 0 0 0 122 0 0 0 60 0 0 0 78 0 0 0 0 0 30 0 0 0 24 0 40 0 30 0 44 0 

00111 0 72 0 72 0 66 0 62 0 24 0 30 0 42 0 40 0 0 0 4 0 14 0 10 0 28 0 38 0 38 0 32 

01000 0 0 0 0 0 0 0 0 200 0 0 0 0 0 0 0 0 0 80 0 0 0 40 0 160 0 0 0 0 0 40 0 

01001 0 0 0 0 0 0 0 24 0 104 0 60 0 0 0 20 0 32 0 36 0 24 0 36 0 80 0 40 0 24 0 40 

01010 0 0 0 0 0 0 60 0 0 0 104 0 0 0 52 0 80 0 0 0 36 0 32 0 0 0 80 0 36 0 40 0 

01011 0 0 0 0 0 30 0 30 0 60 0 56 0 22 0 26 0 36 0 30 0 26 0 36 0 48 0 46 0 34 0 40 

01100 0 0 0 0 154 0 0 0 0 0 0 0 116 0 6 0 0 0 36 0 42 0 32 0 0 0 28 0 80 0 26 0 

01101 0 0 0 40 0 78 0 42 0 0 0 22 0 62 0 36 0 24 0 24 0 34 0 26 0 16 0 34 0 50 0 32 

01110 0 0 96 0 0 0 78 0 0 0 52 0 6 0 60 0 40 0 12 0 32 0 22 0 16 0 40 0 26 0 40 0 

01111 0 48 0 48 0 44 0 40 0 20 0 26 0 36 0 34 0 20 0 26 0 28 0 26 0 24 0 32 0 36 0 32 

10000 0 0 0 0 0 0 0 0 0 0 80 0 0 0 40 0 200 0 0 0 0 0 80 0 0 0 80 0 0 0 40 0 

10001 0 0 0 0 0 0 0 0 0 32 0 36 0 24 0 20 0 104 0 60 0 48 0 60 0 32 0 40 0 24 0 40 

10010 0 0 0 0 0 0 0 0 80 0 0 0 36 0 12 0 0 0 0 0 84 0 52 0 64 0 0 0 48 0 40 0 

10011 0 0 0 0 0 0 0 4 0 36 0 30 0 24 0 26 0 60 0 74 0 64 0 62 0 32 0 28 0 40 0 40 

10100 0 0 0 0 0 0 30 0 0 0 36 0 42 0 32 0 0 0 0 0 116 0 42 0 0 0 24 0 74 0 40 0 

10101 0 0 0 0 0 10 0 14 0 24 0 26 0 34 0 28 0 48 0 64 0 78 0 54 0 16 0 30 0 54 0 40 

10110 0 0 0 0 22 0 0 0 40 0 32 0 32 0 22 0 80 0 0 0 42 0 60 0 32 0 36 0 32 0 38 0 

10111 0 0 0 0 0 10 0 10 0 36 0 36 0 26 0 26 0 60 0 62 0 54 0 56 0 32 0 34 0 38 0 40 

11000 0 0 48 0 0 0 24 0 160 0 0 0 0 0 16 0 0 0 0 0 0 0 32 0 136 0 0 0 0 0 40 0 

11001 0 0 0 20 0 24 0 28 0 80 0 48 0 16 0 24 0 32 0 32 0 16 0 32 0 72 0 36 0 24 0 36 

11010 0 0 0 0 44 0 40 0 0 0 80 0 28 0 40 0 80 0 0 0 24 0 36 0 0 0 72 0 40 0 36 0 

11011 0 24 0 24 0 42 0 38 0 40 0 46 0 34 0 32 0 40 0 28 0 30 0 34 0 36 0 46 0 38 0 40 

11100 0 0 0 0 88 0 30 0 0 0 36 0 80 0 26 0 0 0 0 0 74 0 32 0 0 0 40 0 82 0 36 0 

11101 0 0 0 20 0 54 0 38 0 24 0 34 0 50 0 36 0 24 0 40 0 54 0 38 0 24 0 38 0 58 0 40 

11110 0 0 48 0 22 0 44 0 40 0 40 0 26 0 40 0 40 0 0 0 40 0 38 0 40 0 36 0 36 0 42 0 

11111 0 24 0 24 0 32 0 32 0 40 0 40 0 32 0 32 0 40 0 40 0 40 0 40 0 36 0 40 0 40 0 40 

 


