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Abstract: The McEliece public-key cryptosystem fails to protect any message which is 
sent to a recipient more than once using different random error vectors. In general, it fails 
to protect any messages sent to a recipient which have a known linear relation to one 
another. Under these conditions, which are easily detectable, the cryptosystem is subject 
to a devastating attack which reveals plaintext with a work factor which is 1015 times 
better than the best general attack.  
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1 Introduction 

The McEliece public-key cryptosystem was proposed nearly 20 years ago [14]. The 
system is simple to explain and is very fast in execution. It is based on an NP-hard 
problem in coding theory, and features the ability of a hidden error-correcting code to 
recover plaintext from ciphertexts which the sender intentionally garbles with random 
errors. Although it has received much attention from the cryptologic community, the 
system remains unbroken to this day.  

Despite these advantages, the McEliece public-key cryptosystem it is not widely used. 
Perhaps this is because it has a large public key and a low information rate. But changes 
in technology and economics, for example the plummeting cost of storage, keep it on the 
list of candidates for some applications. 

In this paper we analyze and exploit the failure of the McEliece public-key cryptosystem 
to protect plaintext when any message is sent to a recipient more than once using 
different random error vectors. Our message-resend attack succeeds in time, whereβk 3 β  
is a small constant, and k is the message size of the underlying code. We then generalize 
our attack to a related-message attack, which recovers any messages sent to a recipient 
when a linear relation between the messages is known, again in  time. βk 3
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2 The McEliece Public-Key Cryptosystem 

Without loss of generality we will describe the McEliece public-key cryptosystem system 
using the code and parameter sizes proposed originally by McEliece.  

The private key consists of three matrices: 

• a generator matrix for a (n = 50, k = 524, t = 50) Goppa code G F (Goppa 
codes are a large class of error-correcting codes which have efficient decoding 
algorithms); 

∈ ×
2
524 1024

• an invertible scrambler matrix , and; S F∈ ×
2
524 524

• a permutation .  P F∈ ×
2
1024 1024

The public key is the matrix product SGP. Note that S and P disguise G as a general 
linear code.  

Now suppose a message is to be sent. The parameters of the Goppa code (an 
irreducible polynomial 

m F∈ 2
524

( ) [ ]X F

∈

g x F∈ 2

( )e = 50

 of degree 50 and an ordering of  ) allow for the 

fast error correction of up to 50 errors. So a random error vector is chosen where 
the Hamming weight , and the cryptogram 

210

2
1024e F

wt

c mSGP e= +  

is sent.  

The intended recipient then computes 

cP mSG eP− −= +1 1 . 

Since P is a permutation, . So decoding the Goppa code recovers mS, from 

which, finally, the intended recipient recovers 
( )wt eP− =1 50

m mS S= . ( ) −1

Remarks 

A great many workers, starting with  Adams and Meijer [1,2], Hin [9], and Jorissen [10], 
have explored the relationship between the parameters of the underlying code, the 
security of the cryptosystem, and the data rate. For a description of this line of research 
see van Tilburg [17]. Optimizations have been suggested where n = 1024, k ranges from 
524 to 654, and t ranges from 37 to 50. Our attack is not blunted by such adjustments. 

Other workers have explored replacing the Goppa code with other types of error-
correcting code. For example, Gabidulin et al. [5] tried using maximum-rank-distance 
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codes. These schemes were shown to be insecure by Gibson [6,7]. In any event, such 
code replacements would not prevent our attack, which does not depend on the structure 
of the code. 

3 Cryptanalytic Background 

McEliece stated that the most promising line of attack on his public-key cryptosystem 
consists of decoding an arbitrary linear code containing correctable errors. Therefore, the 
security of the cryptosystem seems to be based on solving the corresponding the BHDD1 
problem.  

The obvious [14,1] attack is this: if a cryptanalyst could guess 524 coordinates of c that 
are not garbled by e, then the restriction to those 524 columns of the cryptogram and the 
public key 

c mSGP=  

relates m to c  by a known SGP F∈ ×
2
524 524 . If SGP  is invertible, then m can be recovered.  

Notice that this is a per-message attack; the secret key of the system remains unknown to 
the cryptanalyst. 

What is the work factor for this attack? The cryptanalyst must correctly guess 524 
ungarbled columns out of the possible 974 = 1024-50. So we can calculate that it will 
require 

1024
524
974
524

137 1016

















≈ ×. guesses to succeed. 

So the work factor is 

w = ⋅ ×α 137 1016. , 

whereα  is the cost of inverting a 524-square matrix, roughly 524 . 3

Notice that the relatively low-weight error vector is crucial to the success of the Goppa 
decoding algorithm, and that it also impacts the work necessary for the cryptanalyst. 

                                                 

)d − 1 2/

1 BHDD (Binary Hamming Distance Decoding) is the name given to the problem of decoding an arbitrary 
binary word to the nearest codeword in an arbitrary linear code under the restriction that the “arbitrary” 
binary word be at distance at most (  from a codeword. Berlekamp, McEliece and van Tilborg 
[4] showed that BHDD is NP-hard.  
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Remarks 

The attack described above can be, and has been, improved slightly by taking partial 
information into account. See Lee and Brickell [12], Li, Deng and Wang [13], and van 
Tilburg [16]. 

There was some excitement and confusion about the cryptanalysis of the McEliece 
public-key cryptosystem a few years ago. Korzhik and Turkin, announced that they had 
broken the cryptosystem. They gave a “demonstration” of their “attack” at Eurocrypt ’91 
[11]. However, the demonstration was only a toy: in place of the Goppa code it used a 
BCH code of dimension 36 in ( )F GF2 2=63 63 , with minimum distance 11, and an error 
vector of weight 5. Even with this simplification, their attack achieved only a five-fold 
speedup over exhaustion. The details have never appeared. More generally, Korzhik and 
Turkin claimed to have found a polynomial time algorithm for BHDD, which is known to 
be NP-hard. But the published description and analysis of their algorithm are not precise, 
and its correct functioning within the claimed time bound has never been confirmed. In 
summary, their attack on the McEliece public-key cryptosystem is not believed to be 
effective. 

 

4 Failure Under Message-Resend Conditions 

Suppose now that, through some accident, or as a result of action in the part of the 
cryptanalyst, both 

c mSGP e1 1= +  
and     e e1 2≠  

c mSGP e2 2= +  

are sent. We call this a message-resend condition. In this case it is easy for the 
cryptanalyst to recover m from the system of ci. (We will examine only the case where 
the number of different cryptograms of the same message, which we call the resend 
depth, is 2. The attack is even easier at greater resend depths.) 

Notice that c c  (mod 2).  e e1 2 1+ = + 2

The cryptanalyst can easily detect a message-resend condition by observing the 
Hamming weight of the sum of any two cryptograms. When the underlying messages are 
different, the expected weight of the sum is about 512. When the underlying messages 
are identical, the weight of the sum cannot exceed 100. Heiman [8] showed that a 
message-resend condition can be detected; we will show how to exploit it.  
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4.1 Method of Attack 

We will compute two sets from ( )c c1 2+ . The set will be the locations where (L0 )c c1 2+  
contains zeroes. The set will be the locations where (L )c c1 1 2+  contains ones. 

Let  

{ } ( ) ( ){ }L l c l c l e l e l0 1 2 11 1024 0= ∈ + = + =,2, , : ( ) ( )L 2  
and 

{ } ( ) ( ){ }L l c l c l e l e l1 1 2 11 1024 1= ∈ + = + =,2, , : ( ) ( )L 2 . 

We aim to take advantage of the fact (and to quantify the claim) that  

• most probably neither l L∈ ⇒0 ( )c l1 nor ( )c l2 is garbled by an error vector, while  

• certainly precisely one of l L∈ ⇒1 ( )c l1  or ( )c l2 is garbled by an error vector.  

Every  means that either l L∈ 0 e l e l1 20( ) ( )= = or e l e l1 1( ) ( )2= = . Assuming the error 
vectors  and e are chosen independently, then for any l e1 2

( ) ( )( )Pr .e l e l1 2

2

1 50
1024

0 0024= = = 



 ≈ . 

In other words, most l signify L∈ 0 ( ) ( )e l e l1 0 2= = . Thus the cryptanalyst should try to 
guess 524 ungarbled columns from those indexed by . L

e

0

How good is this strategy? Let  be the probability that precisely i coordinates are 
simultaneously garbled by  and e . Then 

pi

1 2

( ){ } ( ){ }( )p l e l l e l i
i i

i = = = = =





 −












Pr : :1 21 1

50 974
50

1024
50

I  

since, say, must choose i error locations from those 50 of e and the remaining 50-i 

from those ungarbled by , this out of a total of 


possible error vectors. 

e2 1

e1

1024
50




Therefore the expected cardinality of is L1

( ) ( )E L i pi
i

1
0

50

100 2 951= − ≈
=
∑ .  
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since every l for which ( ) ( )e l1 1=e l 2=  reduces L1 by two.  

For example, suppose L1 94= . Then L0 930= , of which only 3 are garbled. We see 
that the probability of guessing 524 ungarbled columns from those indexed by  is L0

927
524
930
524

0 0828













≈ .   

so the cryptanalyst expects to succeed in this case with only 12 guesses, at a cost of 12α . 

When L1 96=  only about 5 guesses are required! 

These results are a factor of 10  better than the exhaustive attack analyzed in Section 3. 15

Note that this attack does not recover the private key. We do not claim to have broken the 
McEliece public-key cryptosystem. But we have shown how a cryptanalyst may recover 
the plaintext of a resent message with very little work. 

 

5 Failure Under Related-Message Conditions 

We will now generalize the message-resend attack. Suppose that there are two 
cryptograms 

c m SGP e1 1= + 1  
and     m m1 2≠ , e e1 2≠  

c m SGP e2 2= + 2

2

 

and that the cryptanalyst knows a linear relation, for example m m1 + , between the 
messages. We call this a related-message condition. In this case the cryptanalyst may 
recover the from the set of c  by doing one encoding and by then following the attack 
method of Section 4.1. Here are the details. 

m

2

i i

Combining the two cryptograms we get 

c c m SGP m SGP e e1 2 1 2 1+ = + + + . 

Notice that m SPG m SGP m m SGP1 2 1 2+ = +( ) , a value the cryptanalyst may calculate in 
a related-message condition from the known relationship and the public key.  

The cryptanalyst solves 
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c c m m SGP e e1 2 1 2 1+ + + = 2+( )  

and proceeds with the attack as in Section 4.1, using ( ( )c c m m SGP1 2 1 2 )+ + +  in place 
of .  ( )c c+

m m 0+ =

1 2

Remark 

The message-resend attack is that special case of the related-message attack where 
. 1 2

 

6 Conclusions 

The McEliece public-key cryptosystem fails to protect any message which is sent to a 
recipient more than once using different random error vectors.  

The McEliece public-key cryptosystem fails to protect messages sent to a recipient which 
are have a known linear relation to one another.   

Our attack is a general attack on the class of public-key cryptosystems which use an 
error-correcting code and the introduction of random errors by the sender.  

Our attack under these conditions is a factor of 10 better than the best attack under 
general conditions. 

15

Users of the McEliece public-key cryptosystem, and of cryptosystems with similar 
structure, should guard against sending related messages. One countermeasure which 
comes to mind is to introduce an element of local randomness into any message before it 
is encrypted. But note that the obvious c m  falls quickly to a synthesized 
related-message attack. A scheme is required which spreads randomness through the 
plaintext in some complicated fashion. Bellare and Rogaway’s OAEP [3] et seq. are 
instructive. Of course, any such scheme extracts a penalty in data rate.  

r SGP= ( )

Cryptosystems which are based on the use of linear codes but without per-message error 
vectors, for example Neiderreiter [15], are not directly threatened by our attack. 
However, prudence dictates that all such systems now be reexamined for vulnerability to 
message-resend or related-message attack. 
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