A Key Distribution Protocol Using Event
Markers

R. K. BAUER, T. A. BERSON, and R. J. FEIERTAG
Sytek, Inc.

The distribution of cryptographic keys in a computer network is discussed. The need for current
authentication of communicants to prevent playback attacks is demonstrated, and an earlier protocol
is found to be subject to such attacks. A protocol which employs a simple means of obtaining current
suthentication of communicants and does not require communicants to maintain an absolute sense of
time is presented. The protocol is expanded to accommodate key distribution between multiple
security communities, where each community is administered by a different authentication server.
Another form of the protocol which is appropriate for datagram applications is developed.

CR Categories and Subject Descriptors: C.2.0 [Computer-Communication Networks}: General—
security and protection; C.2.2 [Computer-Communication Networks}: Network Protocols—pro-
tocol architecture; D.4.4 {Operating Systems]: Communications Management—network commu-
nication;, E.3 [Data}: Data Encryption—data encryption standard (DES)

General Terms: Design, Security

Additional Key Words and Phrases: Networks, protocols, eneryption, key distribution, authentication

1. INTRODUCTION

Denning and Sacco [2] describe a vulnerability of Needham and Schroeder's key
distribution protocol [1, 5, 7], associated with the compromise of the conversation
key.! This paper describes a related, but more serious, vulnerability in the
Needham and Schroeder protocol and proposes an alternate, more secure protocol
which incorporates the principal features of the Needham and Schroeder protocol
in a compact, symmetric form. Unlike the Denning and Sacco protocol, the one
presented here does not rely upon the existence of date/time clocks with their
associated synchronization problems.

2. COMPROMISE OF A PRIVATE KEY

Compromise of a private key is always a matter of great concern. An intruder
who compromises a user’s private key can decipher any conversation key sent to
the user and can impersonate either the user or the authentication server in its

! For the reader's convenience, the Needham and Schroeder and the Denning and Sacco protocols are
summarized in the Appendix.

Authors' address: Sytek, Inc., 1225 Charleston Rd., Mountain View, CA 94043,

Permisgion to copy without fee all or part of this material is granted provided that the copies are not
made or distribated for direct commercial advantage, the ACM copyright notice and the titie of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1983 ACM 0734-2071/83/0800-0249 $00.75

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983, Pages 249-255.

250 R. K. Bauer, T. A. Berson, and R. J. Felertag

conversations with the user. Denning and Sacco fail to observe the full implication
of such a compromise under the Needham and Schroeder protocol: the possibility
for irreparable damage to the future security of the network. This is illustrated
by the following scenario:

(1) Node A is compromised by some means and KA is learned by an intruder.

(2) The intruder, designated by A and posing as node A, sends one or more key
request messages to the authentication server, following Needham and
Schroeder’s protocol (NS,1-NS.5):

A AS: A, B, I, (NS.1)
The authentication server replies:
AS— A: {1+, B, CK, {CK, A) ¥B} K2 (NS.2)

The intruder now has a conversation key CK and the conversation key
encrypted under B’s private key.

{3) The compromise is discovered and the network is supposedly resecured by
installing a new private key KA’ for node A.

(4) Some period of time later, the intruder uses a conversation key supplied to
him by the authentication server during the compromise. He begins the
playback attack with the message:

A - B: {CK, A} X8 (NS.3)

followed by the Needham and Schroeder handshake (NS.4-N8.5), which fails
to protect B from the intruder posing as A!

B A: {Is} & (NS.4)
A->B: {fTs)} ¥ (NS.5)

Denning and Sacco describe the situation in which the intruder uses a single
conversation key to circumvent the Needham and Schroeder protocol handshake.
By knowing A’s private key, the intruder can stockpile conversation keys for
many network nodes for later use. Even the discovery of the compromise and the
installation of a new private key for A does not invalidate the intruder’s
stockpile of conversation keys. This results because the Needham and Schroeder
protocol lacks a time concept and therefore cannot establish current authenti-
cation.

One means of preventing such a playback attack is to issue a checklist of the
conversation keys issued for each node during the suspected period of compro-
mise. A node invited to join in secure communications could check the supplied
conversation key (NS.3) against the checklist. If a match is found, the connection
could be refused. Obviously, if many keys were issued during the compromise,
this approach introduces substantial processing, storage, and protocol overhead
at every node potentially involved with the compromised key.

The Denning and Sacco protocol corrects the deficiency by injecting a sense of
absolute time (date/time) into the protocol, obviating the Needham and Schroe-
der handshake. In the Denning and Sacco protocol, the currency of crucial
messages is guaranteed by authentication server timestamps which the commu-
nicants compare with their local clocks to protect against playback attacks. While

ACM Transactions on Computer Systeras, Vol. 1, No. 3, August 1983,

A Key Distribution Protocol Using Event Markers 251

this solution appears to have fewer messages than Needham and Schroeder’s
protocol, it relies upon an absolute sense of time. This introduces the need for
clocks, the well-known but difficult problem of synchronization of distributed
clocks [3, 4, 6], and the exchanges of messages which solutions to this problem
entail.

3. CURRENT AUTHENTICATION AND EVENT MARKERS

The playback attacks described above can be prevented without clock penalties.
The protection requires that each communicant maintain some local and private
notion of sequence. This notion is local and private, in the sense that no external
synchronization or coordination between communicants is required for correct
operation. The protocol we describe delivers conversation keys to communicants
with the guarantee that the key was generated in response to some arbitrary
event in each communicant’s local sequence space. Each communicant names a
local event when it enters the protocol. This event name is transmitted to the
authentication server whence it is returned, along with the conversation key,
encrypted under the communicant’s private key. The use of a local event name
to mark a communicant’s entry into the protocol expands the Needham and
Schroeder concept of unique identifiers into one which we call event markers. An
event marker is used by a communicant to ensure a one-to-one correspondence
between his attempts to initiate communication and resulting conversation keys.

In practice, care must be exercised when choosing event markers to provide
current authentication. Any cycles in event marker space must be long, so that
specific event markers are used again only after long intervals of time. Further,
the sequence of event markers must be generated in such a way that at any point
in the sequence the next event marker is unpredictable, even if all the prior event
markers are known. Both of these requirements are engineering compromises of
the underlying ideal requirement, which is that event markers are randomly
drawn without replacement. This care is necessary to render impractical the
attack where an intruder records an encrypted message containing an event
marker and replays it when the event marker comes up for reuse. Using such a
replay attack an intruder could cause the reuse of an old conversation key,
invalidating the premise that the conversation key was generated after the recent
creation of the event marker.

4. A PROTOCOL USING EVENT MARKERS

A graphic representation of a protocol employing event markers is shown in
Figure 1.

A— B: A, EM, (BBF1.1)

A asks B for a secure connection by sending his claimed identity and a unique
and unpredictable event marker (EM,4) to B.? B can either refuse the secure

?One means of generating suitable event markers would be to use the DES algorithm. Each
communicant maintains an eight byte event marker counter. To create the next event marker, the
communicant increments the counter and encrypts the result under some private key producing a
relatively unpredictable event marker with a very long cycle time.

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

252 R. K. Bauer, T. A. Berson, and R. J. Feiertag

BBFL.I

BBF1.3 BBFIL.2

()

Fig. 1. Conversation key distribution with a single authentication
server,

BFi.4

connection or continue the protocol. If B continues then
B— AS: A, EM4, B, EM3 ' (BBF1.2)

B requests a conversation key and various assurances of the authentication server
by sending his claimed identity and his event marker, in addition to those of A.

AS - B: (CK, A, EM3s} ®B(CK, B, EM,} ¥ (BBFL3)

The authentication server generates a unique conversation key CK and sends a
message to B consisting of two similar parts: one intended for B and one to be
forwarded by B to A. (Note that message (BBF1.3) could be sent to A instead of
to B, or to A as well as to B. These alternatives are equivalent in terms of the
security they provide. The illustrated method requires the fewest network con-
nections.) B can decrypt the first part of (BBF1.3) to learn the conversation key,
his intended communicant A, and his original event marker, EM p.* The presence
of A encrypted under B’s private key assures B that the authentication server
understood his request to communicate with A and that that portion of (BBF1.2)
was not modified by an intruder. EMp encrypted under B’s private key, plus
adherence to the precautions, described above, in the generation of EMpg assure
B that (BBF1.3) was generated after the event EMp. If B is careful to change
EMj5 for every connection, then he can be sure that (BBF1.3) was not previously
recorded and played back. Note that the conversation key appears only twice,
once encrypted under A’s private key and once under B’s private key. Hence,
only parties aware of A or B’s private key may learn the conversation key.

B> A: {CK, B, EM,} *4 (BBF1.4)

B forwards to A the portion of (BBF1.3) encrypted with A’s private key. A now
learns the conversation key CK, his intended communicant B, and his original
event marker EM,, giving A the same assurances enjoyed by B from the same
source.

% We presume that the encryption algorithm thoroughly intermixes the positions of all message bits.
This prevents attacks in which specific bits in 2 message of known format are altered to an intruder’s
advantage. This is not an unreasonable requirement, several well-known encryption algorithms
provide this feature.

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

A Key Distribution Protocol Using Event Markers 253

A'S USER COMMUNITY B'S USER COMMUNITY

BBF2.1

BBF2 6

BaF2.2
BBF2.4

()

BBF2.3

Fig. 2. Conversation key distribution when A and B use separate
authentication servers.

Two similar protocols have been devised using public key encryption. In one
public key version, no conversation key is used, and the authentication server is
employed to reliably distribute the public keys of the communicants. Alterna-
tively, public keys are used to distribute a conversation key generated by the
authentication server. The use of event markers and node names in these public
key protocols is identical to their use as presented here.

5. MULTIPLE AUTHENTICATION SERVERS

Many practical applications involve multiple communities of users sharing the
same network. We assume that each community will want its own authentication
server. A and B may then be under the auspices of separate authentication
servers (see Figure 2). The protocol is easily extended to accommodate the
situation where each communicant must receive assurance from its own authen-
tication server. Here AS, is the name or location of A’s authentication server.

A— B: A, EMa, ASa (BBF2.1)
Message (2.1) is modified to include the address of A’s authentication server.

B — ASs: A, EMa4, AS4, B, EM» ~ (BBF2.2)

ASp— ASa: A, B, EMa, EMys, (BBF2.3)
EM sp is an event marker protecting ASg from playback attacks.

ASs — ASs: (CK, B, EMA}**, {CK, EMass} ™ (BBF2.4)

A’s authentication server generates the conversation key, encrypts the message
eventually destined for A under A’s private key, and returns ASy’s event marker.
KX is a key which is used for secure communications between the two authenti-
cation servers. If the number of authentication servers is small, exchange keys

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983,

254 R. K. Bauer, T. A. Berson, and R. J. Feiertag

can be established. Otherwise, additional levels of authentication server hierarchy
can be implemented.

ASp— B: {CK, A, EM3)}*® (CK, B, EM,}** (BBF2.5)
B— A: {CK, B, EM,} * (BBF2.6)
These are identical to (BBF1.3) and (BBF1.4).

6. CURRENT AUTHENTICATION IN DATAGRAM APPLICATIONS

The (BBF1) and (BBF2) protocols require the receiver to supply an event marker
at the time the connection is initiated. Another form of the protocol is more
appropriate for datagram applications and allows delayed distribution of the
conversation key to the receiver, complete with currency guarantees provided by
the use of event markers.

A— AS: A, B, EM, (BBF3.1)
AS— A: {CK, Dip, B, EM,} *4 (BBF3.2)

where Djp is a label generated by AS and used to identify datagrams encrypted
with CK. At A’s convenience, one or more datagrams are sent to B:

A— B: Dip, {datagram(1)}

Dip, {data;ram(n)} cK
When B wishes to decrypt these datagrams he sends
B— AS: Dip, EMg (BBF3.3)
AS— B: {CK, EM3, A, Dip} *8 (BBF3.4)

In (BBF3.4), EMp guarantees the currency of the message, A identifies the
sender, and D;p provides assurance that that portion of (BBF3.3) was not modified
by an intruder. The (BBF3) protocol distributes conversation keys to communi-
cants at their convenience and has some attendant costs. AS must now generate
distinct Dpp’s* and store (A, Dip, CK) triplets until requested by the receiver.

APPENDIX

The Needham and Schroeder and Denning and Sacco protocols are summarized
here for convenience. Minor changes in notation have been made to make the
protocols consistent with the notation used by this paper. The reader should refer
to the original papers for further details.

The Needham and Schroeder Protocol

A— AS: A B L (NS.1)
AS— A: {Ia, B, CK {CK, A} X8} %A (NS.2)
A—> B: (CK, A}*® (NS.3)

* Dp effectively indexes the list of current outstanding CK’s maintained by AS.
ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

A Key Distribution Protocol Using Event Markers 255

B A: {Is} % (NS.4)
A—>B: {fUs)}® where fis a well-known (NS.5)
function.
The Denning and Sacco Protocol
A— AS: A B (DS.1)
AS— A: {B,CK, T, {A, CK, T} ¥B} ¥4 (DS.2)
A B: {A, CK, T}*® where T is a time- (DS.3)
stamp.
REFERENCES

1

2.

a

Davies, D.W,, anNp Price, W.L. Issues in the design of a key distribution centre. Rep. DNACS
43/81, National Physical Laboratory, Teddington, Middlesex, UK, April 1981.

DExNmnG, D.E., AND Sacco, M.S. Timestamps in key distribution protocols. Commun. ACM 24,
8 (Aug. 1981), 533-536.

Lamport, L. Time, clocks and the ordering of events in a distributed system. Commun. ACM
21, 7 (July 1978), 558-565.

. LaMPORT L., SHOSTAK, R., AND PEASE, M. The Byzantine Generals Problem. ACM Trans.

Program. Lang. Syst. 4, 3 (July 1982), 382-401.

. NEEpHAM, R.M., AND SCHROEDER, M.D. Using encryption for authentication in large networks

of computers. Commun. ACM 21, 12 (Dec. 1978), 993-999.

. PEASE, M., SHOSTAK, R., AND LAMPORT L. Reaching agreement in the presence of faults. J.

ACM 27, 2 (April 1980), 228-234.

. PoPER, G.J., AND KLINE C.S. Encryption and secure computer networks. ACM Comput. Surv.

11, 4 (Dec. 1979), 331-355.

Received January 1982; revised March 1983; accepted March 1983

ACM Transactions on Computer Systems, Vol. 1, No. 3, August 1983.

