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Abstract. In this paper, we introduce a new approach to the generation

of binary sequences by applying trace functions to elliptic curves over
GF (2m). We call these sequences elliptic curve pseudorandom sequences

(EC-sequence). We determine their periods, distribution of zeros and

ones, and linear spans for a class of EC-sequences generated from super-
singular curves. We exhibit a class of EC-sequences which has half period

as a lower bound for their linear spans. EC-sequences can be constructed

algebraically and can be generated e�ciently in software or hardware by
the same methods that are used for implementation of elliptic curve

public-key cryptosystems.

1 Introduction

It is a well-known result that any periodic binary sequence can be decomposed as

a sum of linear feedback shift register (LFSR) sequences and can be considered as

a sequence arising from operating a trace function on a Reed-Solomon codeword

[22], [24]. More precisely, let � be a primitive element of a �nite �eld F2n and let

C = fr1; � � � ; rsg; 0 < ri < 2n � 1, be the null spectrum set of a Reed-Solomon

code. If we want to transmit a message m = (m1; � � � ;ms);mi 2 F2n , over a

noisy channel, then �rst we form a polynomial g(x) =
Ps

i=0mix
ri and then

compute cj = g(�j). The codeword is c = (c0; c1; � � � ; c2n�2). Now we apply the

trace function from F2n to F2 to this codeword, i.e., we compute

ai = Tr(ci) = Tr(g(�i)); i = 0; 1; � � � ; 2n � 2: (1)

Then the resulting sequence A = faig is a binary sequence having period which

is a factor of 2n�1. All periodic binary sequences can be reduced to this model.



Note that if g(x) = x, then A is an m-sequence of period 2n�1. A lot of research

has been done concerning ways to choose the function g(x) such that the result-

ing sequence has the good statistical properties. Examples include �lter function

generators [15], [11], [18], combinatorial function generators [14], [25], [23], and

clock controlled generators and shrinking generators[1], [5]. Unfortunately, the

trace function destroys the structure of Reed-Solomon code. It is di�cult to

get sequences satisfying cryptographic requirements from this approach. If one

can specify the linear span, then there is no obvious method to determine the

statistical properties of the resulting sequences. Examples include many conjec-

tured sequences with two-level autocorrelation or lower level cross correlation

[21], [27]. If one can �x the parameters for good statistical properties, then all

known sequences have low linear spans in the sense that ratio of linear span to

the period is much less than 1/2.

Note that if a binary sequence of period 2n has the property that each n-

tuple occurs exactly once in one period, then it is called a de Bruijn sequence [3].

Chan, et al. proved that de Bruijn sequences have large linear spans [4]. From a

de Bruijn sequence of period 2n one can construct a binary sequence of period

2n�1 by deleting one zero from the unique run of zeros of length n. The resulting

sequence is called a modi�ed de Bruijn sequence, see [10]. There is no theoretical

result on the linear spans of such sequences except for m-sequences. Experimental

computation on the linear spans of the modi�ed sequences have only been done

for the sequences with period 15, 31 and 63 [10]. Another problem that de

Bruijn sequences have is that they are di�cult to implement. All algorithms

for constructing de Bruijn sequences (except for a class constructed from the

m-sequences of period 2n � 1) require a huge memory space. It is infeasible to

construct a de Bruijn sequence or a nonlinear modi�ed de Bruijn sequence with

period 2n when n > 30 [6], [7], [9]. (It is a well known fact that in design of

secure systems, if one sequence can be obtained by removing or inserting one bit

from another sequence, and the resulting sequence has a large linear span, then

it is not considered as secure. Consequently, the de Bruijn sequences of period

2n constructed from m-sequences of period 2n� 1 by inserting one zero into the

run of zeros of length n � 1 of the m-sequence are not considered to be good

pseudorandom sequences. )

In this paper, we introduce a new method for generating binary sequences.

We will replace a Reed-Solomon codeword in (1) by the points on an elliptic

curve over F2n . The resulting binary sequences are called elliptic curve pseudo-

random sequences, or EC-sequences for short. We will discuss constructions and

representation of EC-sequences, their statistical properties, their periods and

linear spans. We exhibit a class of EC-sequences which may be suitable for use

as a key generator in stream cipher cryptosystems. These EC-sequences have

period equal to 2n+1, the bias for unbalance is b2n=2c and lower bound and up-

per bounds on their linear spans are 2n and 2n+1 � 2, respectively. It is worth

pointing out that EC-sequences can be constructed algebraically and they can

be generated e�ciently in software or hardware by the same method that are

used for implementation of elliptic curve public-key cryptosystems [20].
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The paper is organized as follows. In Section 2, we introduce some concepts

and and preliminary results from sequence analysis and the de�nition of the

elliptic curves over F2n . In Section 3, we give a method for construction of EC-

sequences and their representation by interleaved structure. In Section 4, we

discuss statistical properties of EC-sequences constructed from supersingular el-

liptic curves. In Section 5, we determine the periods of EC-sequences constructed

from supersingular elliptic curves. In Section 6, we derive a lower bound and an

upper bound for EC-sequences constructed from a class of super-singular elliptic

curves with order 2n+1. Section 7 shows a class of EC-sequences which are suit-

able for use as a key generator in stream cipher cryptosystems. A comparison

of this class of EC sequence generators with the other known pseudo-random

sequence generators is also included in this section.

Remark. Kaliski discussed how to generate a pseudo-random sequence from

elliptic curves in [16], where he used randomness criteria based on the com-

putational di�culty of the discrete logarithm over the elliptic curves [26]. In

this paper our approach is completely di�erent. We use the unconditional ran-

domness criteria to measure the EC-sequences and use the trace function to

obtain binary sequences. A set of the unconditional randomness measurements

for pseudorandom sequence generators is described as follows:

{ Long period

{ Balance property (Golomb Postulate 1 [9])

{ Run property (Golomb Postulate 2)

{ n-tuple distribution

{ Two-level auto correlation (Golomb Postulate 3)

{ Low-level cross correlation

{ Large linear span and smooth increased linear span pro�les

2 Preliminaries

In this section, we introduce some concepts and preliminary results on sequence

analysis.

Let q = 2n, let

Fq be a �nite �eld and let Fq [x] be the ring of polynomials over Fq .

2.1 Trace Function from Fq to F2

Tr(x) = x+ x2 + � � �+ x2
n�1

; x 2 Fq:

Property: Tr(x2
k

) = Tr(x) for any positive integer k.

For x 2 Fq , this can be written as

x = x0�+ x1�
2 + � � �+ xn�1�

2n�1 ; xi 2 f0; 1g
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where f�; �2; � � � ; �2
n�1

g is a normal basis of F2n . In this representation, Tr(x)

can be computed as follows

Tr(x) = x0 + x1 + � � �+ xn�1:

2.2 Periods, Characteristic Polynomials and Minimal Polynomials

of Sequences

Let A = faig be a binary sequence. If v is a positive integer such that

ai = av+i; i = 0; 1; � � � ; (2)

then v is called a length of A. We also write A = (a0; a1; � � � ; av�1), denote

v = length(A). Note the index is reduced modulo v. If p is the smallest positive

integer satisfying (2), then we say p is the period of A, denoted as per(A). It is

easy to see that pjv.

Let f(x) = xl+cl�1x
l�1+ � � �+c1x+c0 2 F2[x]. If f(x) satis�es the following

recursive relation:

al+k =

l�1X
i=0

ciai+k = cl�1al�1+k + � � �+ c1a1+k + c0ak; k = 0; 1; � � �

then we say f(x) is a characteristic polynomial of A over F2.

The left shift operator L is de�ned as

L(A) = a1; a2; � � � ;

For any i > 0,

Li(A) = ai; ai+1; � � � ;

We denote L0(A) = A for convention. If f(x) is a characteristic polynomial of

A over F2, then

f(L)A =

lX
i=0

ciL
i(A) = 0

where 0 represents a sequence consisting of all zeros. (Note 0 represents a number

0 or a sequence consisting of all zeros depending on the context.) Let

G(A) = ff(x) 2 F2[x]jf(L)A = 0g:

The polynomial in G(A) with the smallest degree, say m(x), is called the min-

imal polynomial of A over F2. Note that G(A) is a principle ideal of F2[x] and

G(A) =< m(x) >. So, if f(x) is a characteristic polynomial of A over F2, then

f(x) = m(x)h(x) where h(x) 2 F2[x]. The linear span of A over F2, denoted as

LS(S), is de�ned as LS(A) = deg(m(x)).
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2.3 Interleaved Sequences

We can arrange the elements of the sequence A into a t by s array as follows:0
BBBBB@

a0 at � � � a(s�1)t
a1 at+1 � � � a(s�1)t+1
a2 at+2 � � � a(s�1)t+2
...

at�1 at+t�1 � � � a(s�1)t+t�1

1
CCCCCA

Let Ai denote the ith row of the above array. Then we also write the sequence

A = (A0; A1; � � � ; At�1)
T where T is a transpose of a vector. In reference [12],

A is called an interleaved sequence if Ai, 0 � i � t � 1, has the same minimal

polynomial over F2. Here we generalize this concept to any structures of Ais.

We still refer to A as a (t; s) interleaved sequence. By using the same approach

as used in [12], we can have the following proposition.

Proposition 1 Let v be a length of A and A be a (t; s) interleaved sequence

where v = ts. Let mi(x) 2 F2[x] be the minimal polynomial of Ai, 1 � i � t and

m(x) 2 F2[x] be the minimal polynomial of A, then

m(x)jmj(x
t); 0 � j � t� 1:

2.4 Elliptic Curves over F2n

An elliptic curve E over F2n can be written in the following standard form (see

[19]):

y2 + y = x3 + c4x+ c6; ci 2 F2n (3)

if E is supersingular, or

y2 + xy = x3 + c2x
2 + c6; ci 2 F2n (4)

if E is non-supersingular. The points P = (x; y), x; y 2 F2n , that satisfy this

equation, together with a \point at in�nity" denoted O, form an Abelian group

(E;+; O) whose identity element is O.

Let P = (x1; y1) and Q = (x2; y2) be two di�erent points in E and both P

and Q are not equal to the in�nity point.

Addition Law for E supersingular For 2P = P + P = (x3; y3),

x3 = x41 + c24 (5)

y3 = (x21 + c4)(x1 + x3) + y1 + 1 (6)

For P +Q = (x3; y3), if x1 = x2, then P + Q = O . Otherwise,

x3 = �2 + x1 + x2

y3 = �(x1 + x3) + y1 + 1

where � = (y1 + y2)=(x1 + x2).

Remark 1 For a detailed treatment of sequence analysis and an introduction to

elliptic curves, the reader is referred to [9], [19].

5



3 Constructions of Pseudorandom Sequences from

Elliptic Curves over Fq

In this section, we give a construction of binary sequences from an elliptic curve

over Fq .

Let E be an elliptic curve over Fq , denoted as E(Fq ) or simply E if there

is no confusion for the �eld that we work with, and let jEj be the number of

points of E over Fq . Let P = (x1; y1) be a point of E with order v+1. Note that

v + 1jjEj. Let � = (P; 2P; � � � ; vP ) where iP = (xi; yi), 1 � i � v. Note that v

is even if E is supersingular. v may be odd or even if E is non-supersingular.

So, we can write v = 2l if E is supersingular and v = 2l + e; e 2 F2 if E is

non-supersingular.

3.1 Construction

Let

ai = Tr(xi) and bi = Tr(yi); i = 1; 2; � � �; v; (7)

S0 = (a1; � � � ; av) and S1 = (b1; � � � ; bv): (8)

Let S = (S0; S1)
T be a (2; v) interleaved sequence, i.e., the elements of S =

fsigi�1 are given by

s2i�1 = ai and s2i = bi; i = 1; � � � ; v (9)

where length(S) = 2v. For a convenient discussion in the following sections, we

write S starting from 1, we denote 0 as 2v when the index is computed modulo

2v. We call S a binary elliptic curve pseudorandom sequence generated by E(Fq )

of type I, an EC-sequence for short.

Remark 2 In the full paper [13], we discuss two other methods of constructing

sequences from elliptic curves.

Let A = (a1; a2; � � � ; al) and B = (b1; b2; � � � ; bl). If U = (u1; u2; � � � ; ut), then

we denote
 

U= (ut; ut�1; � � � ; u1), i.e., U written backwards.

Theorem 1 With the above notation. Let v + 1jjEj, and let S = (S0; S1)
T be a

EC-sequence generated by E(Fq ) of length 2v whose elements are given by (9).

Let E be supersingular. Then

S =

 
A
 

A

B
 

B +1

!
(10)

Proof. Let E be supersingular. Note that y and y + 1 are two roots of (3) in Fq

under the condition Tr(x3 + c4x+ c6) = 0. Since the order of P is v + 1, then

iP + (2l + 1� i)P = O =) xl+i = xl+1�i =) yl+i = yl+1�i + 1; i = 1; � � � ; l:

Thus we have S0 = (A;
 

A) and S1 = (B;
 

B +1).
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4 Statistical Properties of Supersingular EC-Sequences

In this section, we discuss the statistical properties of EC-sequences generated

by supersingular curves over F2n where n is odd. Let A = (a0; � � � ; ap�1), w(A)

represent the Hamming weight of sequence A. i.e.,

w(A) = jfi j ai = 1; 0 � i < pgj:

For convenience, we generalize the notation of Hamming weight of binary se-

quences to functions from Fq to F2. Let g(x) be a function from Fq to F2, the

weight of g is de�ned as w(g) = jfx 2 Fq jg(x) = 1gj. For two isomorphic curves

E(Fq) and T (Fq ), denote this by E �= T . >From [19], there are three di�erent

isomorphism classes for supersingular curves over Fq (q = 2n) for n odd.

1. E1 = fE(Fq)jE(Fq ) �= y2 + y = x3g and jE1j = 22n�1 and for any E(Fq ) 2

E1, jEj = q + 1.

2. E2 = fE(Fq)jE(Fq ) �= y2 + y = x3 + xg.

3. E3 = fE(Fq)jE(Fq ) �= y2 + y = x3 + x+ 1g.

Here jE2j = jE3j = 22n�2. For any E(Fq ) 2 E2 or E3, jEj = 2n � 2(n+1)=2 + 1:

Let

E : y2 + y = x3 + c4x+ c6; c4; c6 2 Fq :

Theorem 2 Let n be odd. Let S =

 
A
 

A

B
 

B +1

!
be an EC-sequence generated

by a supersingular elliptic curve E where length(S) = 2v and v = jEj � 1.

Then w(S0) = 2w(A), w(S1) = v=2 and w(S) = 2w(A) + v=2, where w(A) =

2n�2 � 2(n�3)=2.

In order to prove this result, we need the following lemma. If we denote

h(x) = x3 + c4x+ c6, then E can be written as y2 + y = h(x).

Lemma 1 Let E and h(x) be de�ned as above. Then we haveX
x2F2n

(�1)Tr(h(x)) = jEj � 2n � 1:

Proof.X
x2F2n

(�1)Tr(h(x)) = jfx 2 F2n : Tr(h(x)) = 0gj � jfx 2 F2n : Tr(h(x)) = 1gj

= 2jfx 2 F2n : Tr(h(x)) = 0gj � 2n

= (jEj � 1)� 2n:

For i; j = 0; 1, de�ne

ni;j = jfx 2 F2n : Tr(x) = i; T r(h(x)) = jgj:
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Next we determine n1;0. Let F denote the elliptic curve y2 + y = h(x) + x.

Then the following equations hold:

n1;0 + n1;1 = 2n�1

n0;0 + n0;1 = 2n�1

n0;0 + n1;0 = (jEj � 1)=2

n0;0 + n1;1 � (n0;1 + n1;0) = jF j � 1� 2n:

Note that the last equation follows easily from Lemma 1 since

n0;0+n1;1�(n0;1+n1;0) = jfx 2 F2n : Tr(x+h(x)) = 0gj�jfx 2 F2n : Tr(x+h(x)) = 1gj:

Now, this system of four equations in four unknowns is easily seen to have a

unique solution. The value of n1;0 is as stated in the following lemma:

Lemma 2 Let E;F and n1;0 be de�ned as above. Then we have

n1;0 = 2n�2 +
jEj � jF j

4
:

It is known that jEj � jF j = �2(n+1)=2 for any values of c4 and c6 (This is

shown in [8]; alternatively it follows easily from [19], p.40 and 47.) Thus we have

the following corollary:

Corollary 1 Let n1;0 be de�ned as above; then n1;0 = 2n�2 � 2(n�3)=2.

Proof (Proof of Theorem 2). Since length(S) = 2v, from Theorem 1, we have

w(S0) = 2w(A) and w(S1) = v=2. So,

w(S) = 2w(A) + v=2: (11)

According to the de�nition of ni;j, we have w(A) = n10. From Corollary 1,

w(A) = 2n�2 � 2(n�3)=2.

Remark 3 The value of w(A) depends on the values of c4 and c6. For further

results on this, we refer the reader to the full version of this work [13].

5 Periods of Super-singular EC-Sequences

In this section, we discuss the periods of EC-sequences generated by super-

singular curves.

Lemma 3 Let S = (S0; S1)
T be a EC-sequence generated by a super-singular

elliptic curve E(Fq ) where S0 = (a1; a2; � � � ; av) and v = jEj � 1 = 2l . Then

a2i = ai + Tr(c4); i = 1; 2; � � � ; l:
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Proof. Recall that ai = Tr(xi). From formula (5) in Section 1,

x2i = x4i + c24; i = 1; � � � ; l: (12)

=) a2i = Tr(x2i) = Tr(x4
i
+ c24) = Tr(xi) + Tr(c4) = ai + Tr(c4).

De�nition 1 Let U = (u1; u2; � � � ; u2k) be a binary sequence of length 2k. Then

U is called a coset �xed palindrome sequence of length 2k, CFP-sequence of length

2k for short, if it satis�es the following two conditions.

(i) Palindrome Condition (P)

U = (U0;
 

U0) where U0 = (u1; u2; � � � ; uk).

(ii) Coset Fixed Condition (CF)
u2i = ui + c, for each 1 � i � k where c is a constant in F2.

Lemma 4 Let U be a CFP sequence of length 2d and 0 < w(U ) < 2d. Then

per(U ) = 2d.

Proof. We claim that per(U ) 6= 2. Otherwise, from the coset �xed condition

u2i = ui, 1 � i � d, we get w(U ) = 0 or w(U ) = 2d, which is a contradiction

with the given condition. Therefore we can write per(U ) = t where 2 < t and

tj2d. If t < 2d, let 2d = ts. Then

ut+i = ui; i = 1; 2; � � �: (13)

Since U is a CFP sequence, from condition (i) in De�nition 1, we have

ud�i = ud+1+i; 0 � i � d� 1: (14)

>From (13) and (14), we get

ul�i = ul+1+i; 0 � i � l � 1 (15)

where l = t=2 if t is even and

ul�i = ul+i; 1 � i � l � 1 (16)

l = (t+ 1)=2 if t is odd. >From condition 2 in De�nition 1,

u2i = ui + c; 1 � i � t: (17)

Since 0 < w(U ) < 2d and U satis�es the CF condition, there exists k : 0 � k < l

such that

(ut+2k+1; ut+2k+2) = (1; 0) or (0; 1): (18)

( For a detailed proof of existence of such k, please see the full version of this

paper [13].)

Case 1 t = 2l. Applying the above identities,

ul+k+1
(17)
= u2l+2k+2 + c = ut+2k+2 + c: (19)
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On the other hand,

ul+k+1
(15)
= ul�k

(17)
= u2l�2k + c = ut�2k + c

(14)
= ut+2k+1 + c (20)

(19) and (20) =) ut+2k+1 = ut+2k+2 which contradicts with (18). Thus per(U ) =

2d.

Case 2 t = 2l � 1.

ul+k+1
(17)
= u2l+2k+2 + c = ut+2k+1 + c: (21)

ul+k+1
(16)
= ul�k�1

(17)
= u2l�2k�2+ c = ut�2k�1+ c

(14)
= ut+2k+2 + c (22)

(21) and (22) =) ut+2k+1 = ut+2k+2 which contradicts with (18). Thus per(U ) =

2d.

Lemma 5 Let S = (S0; S1)
T be a EC-sequence of length 2v, generated by a

supersingular elliptic curve E(Fq), where vj(jEj � 1) and 0 < w(S0) < v. Then

per(S0) = v.

Proof. >From Theorem 1, we have S0 = (A;
 

A), where length(A) = v=2. To-

gether with Lemma 3, S0 is a CFP sequence of length v. Since 0 < w(S0) < v,

applying Lemma 4, we get per(S0) = v.

Lemma 6 Let S = (S0; S1)
T be a EC-sequence of length 2v, generated by an

elliptic curve E(Fq ), where vj(jEj � 1). Then per(S) is an even number.

Proof. Assume that per(S) = 2t + 1. Then we have s1 = s2t+2 = bt+1 and

bv�t+1 = s2v�2(t+1) = s1 =) bv�t+1 = bt+1. From Theorem 1, bv�t+1 = bt+1+1

which is a contradiction. So, per(S) is even.

Theorem 3 Let S = (S0; S1)
T be a EC-sequence of length 2v, generated by a

supersingular elliptic curve E(Fq), where vj(jEj � 1) and 0 < w(S0) < v. Then

per(S) = 2v.

Proof. Since length(S) = 2v, then per(S)j2v. According to Lemma 6, per(S) =

2t where tjv. Assume that t < v. Then

at+j = s2(t+j)�1 = s2t+2j�1 = s2j�1 = aj; j = 1; 2; � � � :

Thus, t is a length of S0 =) per(S0)jt . According to Lemma 5, per(S0) = v.

Thus t = per(S0) = v =) per(S) = 2v.

Corollary 2 Let n be odd. Let S = (S0; S1)
T be a EC-sequence of length 2v, gen-

erated by a supersingular elliptic curve E(Fq ), where vj(jEj�1). Then per(S) =

2v.

Proof. >From Theorem 4, we have 0 < w(S0) < v. Applying Theorem 5, the

result follows.
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6 Linear Span of Supersingular EC-Sequences

In this section, we derive a lower bound and an upper bound on the linear span

of the EC-sequences generated by supersingular elliptic curves in the isomorphic

class E1. For convenience in using Proposition 1, from now on we will write

S, S0 and S1 with the starting index at 0, i.e., S = (s0; s1; � � � ; s2n+1�1), S0 =

(a0; a1; � � � ; a2n�1) and S1 = (b0; b1; � � � ; b2n�1) (v = 2n in this case). So,

ai = s2i; i = 0; 1; � � � ;

bi = s2i+1; i = 0; 1; � � � :

Lemma 7 Let U = (u0; � � � ; u2k�1) where per(U ) = 2k and w(U ) � 0 mod 2.

Then, the linear span of U , LS(U ), is bounded as follows:

2k�1 < LS(U ) � 2k � 1

Proof. Let h(x) be the minimal polynomial of U over F2. Let f(x) = x2
k

+ 1,

then f(L)(S) = 0. Thus h(x)jf(x). Since

f(x) = x2
k

+ 1 = (x+ 1)2
k

;

we have h(x) = (x + 1)t where t is in the range of 1 � t � 2k. Since w(U ) � 0

mod 2, let p = 2k, we have

up+j =

p�1X
i=0

uj+i; j = 0; 1; � � � :

=) g(x) =
Pp�1

i=0 x
i is a characteristic polynomial of U over F2. So h(x)jg(x) =)

LS(U ) � 2k � 1.

On the other hand, if r < 2k�1, then h(x)j(x + 1)2
k�1

= x2
k�1

+ 1 =)

x2
k�1

+ 1 is a characteristic polynomial of U over F2 =)

(L2
k�1

+ 1)U = u2k�1+i + ui = 0; i = 0; 1; � � �

=) per(U )j2k�1. This contradicts per(U ) = 2k. So, r = LS(U ) > 2k�1.

Theorem 4 Let n be odd. Let S be an EC-sequence of length 2v, generated from

a supersingular elliptic curve E(Fq ) which is isomorphic to y2 + y = x3, where

v = jEj � 1. Then

2n � LS(S) � 2(2n � 1):

Proof. >From Corollary 2, we have per(S) = 2n+1. According to Theorem 2,

w(S) � 0 mod 2. So, S satis�es the conditions of Lemma 7. Applying Lemma 7,

2n < LS(S) < 2n+1 � 1:
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Now, we only need to prove that LS(S) � 2(2n � 1). Let m(x) and m0(x) be

the minimal polynomials of S and S0 over F2, respectively, where S = (S0; S1)
T .

According to Proposition 1, we have

m(x)jm0(x
2) =) deg(m(x)) � 2deg(m0(x)):

Since S0 also satis�es the condition of Lemma 7, we get deg(m0(x)) = LS(S0) �

2n � 1. So,

LS(S) = deg(m(x)) � 2deg(m0(x)) � 2(2n � 1):

7 Applications

In this section, using the theoretical results that we obtained in the previous

sections, we construct a class of EC-sequences with large linear spans and small

bias unbalance, point out its implementation and give a comparison of ECPSG

I with other known pseudorandom sequence generators.

7.1 ECPSG I

(a) Choose a �nite �eld K = F2n where n is odd

(b) Randomly choose a super singular curve E : y2 + y = x3+ c4x+ c6 over F2n

in the isomorphism class E1 of the curve y
2 + y = x3. (jE1j = 22n�1.)

(c) Randomly choose a point P = (x; y) on the curve E such that the order of

P is 2n + 1.

(d) Compute iP = (xi; yi), i = 1; � � � ; 2n.

(e) Map iP into a binary pair by using the trace function

ai = Tr(xi) and bi = Tr(yi)

(f) Concatenate the pair (ai; bi) to construct the sequence S = (a1; b1; a2; b2; � � � ; a2n ; b2n).

Let

G(E1) = fS = fsigjS generated by E(F2n) 2 E1g:

G(E1) is called an elliptic curve pseudorandom sequence generator of type I

(ECPSG I). Any sequence inG(E1) satis�es that per(S) = 2n+1,w(S) = 2n�2m

and 2n < LS(S) � 2(2n � 1).

Example Let n = 5.

(a) Construct a �nite �eld F25 which is generated by a primitive polynomial

f(x) = x5 + x3 + 1. Let � be a root of f(x). We represent the elements in

F25 as a power of �. For zero element, we write as 0 = �1.

(b) Choose a curve E : y2 + y = x3 .

(c) Choose P = (�; �23) with order 33.

(d) Compute iP = (xi; yi), i = 1; � � � ; 32, and the exponents of � for each point

iP are listed in Table 1.

12



Table 1. fiPg

(1, 23) (4, 13) (18, 7) (16, 27) (13, 5)

(10, 2) (26, 6) (2, 22) (5, 14) (21, 12)

(1; 0) (9, 19) (22, 17) (11, 9) (20, 25)
(8, 29) (8 , 26) (20, 4) (11, 24) (22, 18)

(9, 8) (1;1) (21, 20) (5 , 1) (2, 15)

(26, 10) (10, 28) (13, 3) (16, 21) (18, 16)
(4, 30 ) (1, 11)

(e) Map the point iP into two bits by the trace function:

x-coordinate sequence

fai = Tr(xi)g = 00101110110111100111101101110100

and y-coordinate sequence

fbi = Tr(yi)g = 01101001101101101001001001101001

(f) Interleave (ai; bi):

S = (a1; b1; a2; b2; � � � ; a32; b32)

= 0001110011101001111001111011110001101011100011100011111001100001

According to Theorems 3, 2 and 4, we have

{ per(S) = 64.

{ w(S) = 25 + 22 = 36. The bias of unbalance is equal to 4 for S.

{ Linear span: 32 < LS(S) � 62.

Remark 4 1. The actual linear span of S is 62 and it has the minimal poly-

nomial m(x) = (x+ 1)62.

2. The linear span of a periodic sequence is invariant under the cyclic shift

operation on the sequence. We computed the supersingular EC-sequences over

F25 and F27 for all phase shifts of the sequences. Experimental data shows

that the pro�le of linear spans of any supersingular EC-sequence increases

smoothly for each phase shift of the sequence.

7.2 Implementation of ECPSG I

Implementation of ECPSG relies only on implementation of elliptic curves over

F2n , we can borrow software/hardware from elliptic curve public-key cryptosys-

tems to implement ECPSG.
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7.3 A Table

In Table 2, we compare the period, frequency range of 1 occurrence, unbalance

range, and linear span (LS) of ECPSG I with other sequence generators, such as

�lter function generators (FFG), combinatorial function generators (CFG), and

clock controlled generators (CCG). We also include data for de Bruijn sequences.

We conclude that ECPSG I may be suitable for use as a key generator in a stream

cipher cryptosystem.

Table 2. Comparison of ECPSG I with Other Sequence Generators

Type of Period Frequency Range Unbalance Linear
Generator of 1 occurrence Range Span

FFG 2n � 1 [1; 2n�1] [1; 2n�1] unclear

CFG � 2n � 1 [1; 2n�1] [1; 2n�1] unclear

CCG (2n � 1)2 2n�1(2n � 1) 2n � 1 n(2n � 1)

de Bruijn 2n+1 2n 0 � 2n + n+ 1

� 2n+1 � 1

ECPSG I 2n+1 2n � 2(n�1)=2 �2(n�1)=2 � 2n

� 2n+1 � 2
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