United States Patent

US007051199B1

(12) (10) Patent No.: US 7,051,199 B1
Berson et al. 45) Date of Patent: May 23, 2006
(54) SYSTEM, METHOD AND ARTICLE OF 5,802,176 A 9/1998 Audebert
MANUFACTURE FOR PROVIDING 5,862,220 A 1/1999 Perlman
CRYPTOGRAPHIC SERVICES UTILIZING A 5,898,784 A * 4/1999 Kirby et al. 713/153
NETWORK 5,956,404 A 9/1999 Schneier et al.
5,991,399 A 11/1999 Graunke et al.
(75) Inventors: Thomas A. Berson, Palo Alto, CA g’gij’%g i légggg]S)u.dla et al.
. i ,044, riscoll, III et al.
(US); R. Drews Dean, Cupertino, CA 6.055.508 A 4/2000 Naor ef al.
(US), Matthew K. Franklin, Palo AltO, 6,078,663 A 6/2000 Yamamoto
CA (US); Diana K. Smetters, 6,157,649 A * 12/2000 Peirce et al. 370/401
Burlingame, CA (US) 6,269,157 Bl 7/2001 Coyle
6,304,915 B1 10/2001 Nguyen et al.
(73) Assignee: Xerox Corporation, Stamford, CT 6,643,701 B1* 11/2003 Aziz etal.cccoeee.e. 709/227
(US) 6,643,774 B1* 11/2003 McGarvey 713/155
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35 EP 0 736 827 A2 10/1996
U.S.C. 154(b) by 687 days. WO WO 98/42098 9/1998
WO WO 98/52316 11/1998
(21) Appl. No.: 09/596,652 * cited by examiner
(22) Filed: Jun. 19, 2000 Primary Examiner—Gilberto Barrén, Ir.
Assistant Examiner—G. Gurshman
(51) Imt.CL
HO4L 9/00 (2006.01) (57) ABSTRACT
(52) US.CL oo 713/150; 380/278
(58) Field of Classification Search 713/151, A system, method and article of manufacture are provided
L 713/ 150} 3807278 for affording a cryptographic service utilizing a server on a
See application file for complete search history. network. Initially, a client is identified utilizing the network.
(56) References Cited A first key is established, and a tunnel is generated on the

U.S. PATENT DOCUMENTS

5,369,708 A * 11/1994 Kawamura et al. 380/30
5,604,801 A * 2/1997 Dolan et al. 713/159
5,673,316 A 9/1997 Auerbach et al.

5,790,664 A 8/1998 Coley et al.

170
N

CRYPTO
SERVER

network. Thereafter, information is received at the server
from the client utilizing the tunnel. Such information is
encrypted by the client using the first key. At the server,
cryptographic work is performed using the first key.

20 Claims, 17 Drawing Sheets

172

176

4

CLIENT

CLENT

174

US 7,051,199 B1

Sheet 1 of 17

May 23, 2006

U.S. Patent

[Ol4

431dvay

AV1dSId

y31d4vay
JOV4H3LINI

NE) :,xﬂum
/ /! 7 o’
g€l 9 221
Zh
MALAYAY M3LdVaV
—u|zo:<oz:zzoo — o P.§<m _ o —|wao
5\ ¢ m:\ » “\ ol / o:\
(G€1) YHOMLIN
0z

US 7,051,199 B1

Sheet 2 of 17

May 23, 2006

U.S. Patent

IN3ND

(413

<
ﬂv

05t

VI Old4

aN3S

O AN3S

1dAYONT

Ald3y
EIELER)

est

d \mmh

10/

1S3NON
JAIFO3Y

T 1

89

|

Va

1dA¥J3d

00V | L., | ooV
OLdAYO OLdAYD
S B 89
e [1o
XYOM [N
AN 091
SL
NOISSY
10 |
-1 3a
81

U.S. Patent May 23, 2006 Sheet 3 of 17 US 7,051,199 B1

172

170 176

AN 4

CRYPTO
SERVER CLIENT

174
CLENT

FIG. IB

U.S. Patent May 23, 2006 Sheet 4 of 17 US 7,051,199 B1

] HAND HELD OTHER | ~
COMPUTER COMPUTER

186
] DEskToP LAPTOP | ~

COMPUTER COMPUTER

FIREWALL 192
|

o

DESKTOP LAPTOP HAND HELD OTHER
COMPUTER COMPUTER COMPUTER COMPUTER

\186 \188 \190 \191
FIG. IC

U.S. Patent

200

USER

USER

USER

USER

May 23, 2006

Sheet 5 of 17

USER

USER

202

FIG. 2

USER

US 7,051,199 B1

USER

USER

USER

U.S. Patent

200

USER

USER

210

USER

USER

USER

May 23, 2006 Sheet 6 of 17
220
USER 202
USER

FIG. 3

US 7,051,199 B1

USER

USER

USER

U.S. Patent May 23, 2006 Sheet 7 of 17 US 7,051,199 B1

210
220

SERVER

FIG. 4

U.S. Patent May 23, 2006 Sheet 8 of 17 US 7,051,199 B1

900

—\ /502

IDENTIFYING A CLIENT UTILIZING THE NETWORK

l P
ESTABLISHING A FIRST KEY
l 08

GENERATING A TUNNEL ON THE NETWORK

l /508

RECEIVING INFORMATION AT THE SERVER FROM THE CLIENT
UTILIZING THE TUNNEL, WHEREIN THE INFORMATION IS
ENCRYPTED BY THE CLIENT USING THE FIRST KEY

l /-510
PERFORMING WORK AT THE SERVER WHICH IS ENCRYPTED
USING THE FIRST KEY

FIG. 5

U.S. Patent May 23, 2006 Sheet 9 of 17

Client

Encrypt Information
Using the First Key

Encrypt Second Key
Using the First Key

Establish a First Key (602)

d

Send Encrypted
Information to Server (604)

Send Second Key to
Server (606)

Send Work
to Client (608)

FIG. 6

US 7,051,199 B1

Server

%

Perform
Work

U.S. Patent May 23, 2006 Sheet 10 of 17 US 7,051,199 B1

RECEIVING AREQUEST FOR A CRYPTOGRAPHIC
SERVICE

700
N\

704

ALLOW USER
TO SELECT METHOD
TO PAY?

SPECIFIES
SPEED?

SPECIFIES PRIVACY
LEVEL?

706 L 710
RECEIVING THE RECEIVING THE RECEIVING THE
SELECTION DESIRED PRIVACY SPECIFIED SPEED
OF THE USER LEVEL OF THE USER FROM THE USER

IDENTIFYING A COMPUTATIONAL BURDEN REQUIRED TO
PERFORM THE CRYPTOGRAPHIC SERVICE, A PRIVACY
LEVEL OF THE CRYPTOGRAPHIC SERVICE, AND A SPEED
OF PERFORMING THE CRYPTOGRAPHIC SERVICE

g =
PERFORMING ENCRYPTION
1 720

DETERMINING A PRICE OF THE CRYPTOGRAPHIC
SERVICE BASED ON THE AT LEAST ONE OF THE
COMPUTATIONAL BURDEN, PRIVACY LEVEL, AND SPEED
v 5’722
REQUESTING PAYMENT FROM THE USER

R

RECEIVING PAYMENT FROM THE USER

— 724

FIG. 7

U.S. Patent May 23, 2006 Sheet 11 of 17

800

N

US 7,051,199 B1

802
e

CHOOSE AN ORDINARY DATABASE QUERY

l

804
e

GENERATE A PRIVACY PRESERVING DATABASE QUERY

i

806
/

SEND THE PRIVACY PRESERVING QUERY TO THE DATABASE

l

808
el

DATABASE CALCULATES REPLY

|

810
/

RECEIVE REPLY FROM DATABASE

812
e

CALCULATE QUERY RESULTS FROM DATABASE REPLY

FIG. 8

U.S. Patent May 23, 2006 Sheet 12 of 17 US 7,051,199 B1

e
(=)
pwe)

20U \
/—-902

RECEIVING A QUOTED VALUE FOR BEING PART OF THE
MIX FROM EACH POTENTIAL PARTICIPANT

L /904

CHOOSING THE PARTICIPANTS SO THAT THE SUM OF THESE
VALUES IS MAXIMIZED

906
Y /

CHARGING EACH PARTICIPANT THE DIFFERENCE BETWEEN
WHAT THIS SUM IS AND WHAT THIS SUM WOULD HAVE BEEN
HAD THIS PARTICIPANT BEEN IGNORED

FIG. 9

U.S. Patent May 23, 2006 Sheet 13 of 17 US 7,051,199 B1

mg\‘

1002
i

RECEIVING REQUEST FOR ENCRYPTING A MESSAGE

I /-1 004

ENCRYPTING THE MESSAGE, WHERE THE MESSAGE IS
COMPRESSED DURING THE ENCRYPTION

J 1006
DETERMINING AN AMOUNT OF COMPRESSION
OF THE MESSAGE
l 1008

CALCULATING A PRICE OF THE ENCRYPTION BASED
ON THE AMOUNT OF COMPRESSION

FIG. 10

U.S. Patent May 23, 2006 Sheet 14 of 17 US 7,051,199 B1

1100

~ &

1102
el

SELECTING A VARIABLE PRICING SCHEME FOR CHARGING
FOR A CRYPTOGRAPHIC SERVICE

f 1104

FIG. 12 PRICING THE CRYPTOGRAPHIC SERVICE BASED ON THE
' SELECTED VARIABLE PRICING SCHEME

l /1106

PROVIDING A RECEIPT FOR THE CRYPTOGRAPHIC
SERVICES

l /—1 108

FIG. 13 AUDITING THE CRYPTOGRAPHIC SERVICES

|
=)

FIG. I']

U.S. Patent May 23, 2006 Sheet 15 of 17 US 7,051,199 B1

lm\ (START)
l i

RECEIVING AREQUEST FOR A CRYPTOGRAPHIC SERVICE FROM
A USER UTILIZING ANETWORK, THE REQUEST BEING RECEIVED
BY A CRYPTOGRAPH SERVICE PROVIDER

l /-1204
SELECTING A CRYPTOSERVER TO PERFORM THE
CRYPTOGRAPHIC SERVICE
l [—1206

PERFORMING THE CRYPTOGRAPHIC SERVICE

L /1 208

GENERATING A CONTRACT BASED ON A VARIABLE PRICING
SCHEME IN RESPONSE TO THE REQUEST

L /’1210

SENDING THE CONTRACT FROM THE CRYPTOGRAPHIC SERVICE
PROVIDER TO THE USER UTILIZING THE NETWORK

]
=)

FIG. 12

U.S. Patent May 23, 2006 Sheet 16 of 17 US 7,051,199 B1

1300
\ C START)
l /1302
OBTAINING A CRYPTOGRAPHIG KEY
l /1304

ALLOWING A PLURALITY OF USERS TO REQUEST THAT A
CRYPTOGRAPHIC SERVER USE THE CRYPTOGRAPHIC
KEY IN VIOLATION OF A SECURITY PROVISION

1 1306

DID THE CRYPTOGRAPHIC
SERVER SIGN THE MESSAGE IN
RESPONSE TO THE REQUEST?

YES 1308
l e

PROVIDING AN INDICATION OF FAILED SECURITY INTEGRITY
UPON DETERMINING THAT THE CRYPTOGRAPHIC SERVER
SIGNED THE MESSAGE

l /1310

EXECUTING AKILL COMMAND

NO

C END)

FIG. I3

U.S. Patent May 23, 2006 Sheet 17 of 17

140

o C START)
o i

0

US 7,051,199 B1

1402
i

RECEIVING A CRYPTOGRAPHIC KEY GENERATED BY
A PLURALITY OF USERS

l /1404

UTILIZING THE CRYPTOGRAPHIC KEY TO SIGN A MESSAGE

! o

1406

MONITORING THE CRYPTOSERVER FOR ATTEMPTING TO

DETERMINE THE CRYPTOGRAPHIC KEY FROM BEHAVIOR OF

THE CRYPTOSERVER WHILE IT SIGNS THE MESSAGE

KEY DETERMINED?

NO< WAS THE CRYPTOGRAPHlE‘>

YES 1408
l o

PROVIDING AN INDICATION OF FAILED INTEGRITY
UPON DETERMINING THAT THE CRYPTOGRAPHIC
SERVER SIGNED THE MESSAGE

J /1410

EXECUTING AKILL COMMAND

C END j

FIG. 14

US 7,051,199 Bl

1

SYSTEM, METHOD AND ARTICLE OF
MANUFACTURE FOR PROVIDING
CRYPTOGRAPHIC SERVICES UTILIZING A
NETWORK

FIELD OF THE INVENTION

The present invention relates generally to cryptography
and, more particularly, to a cryptographic server for deliv-
ering cryptographic services over a network.

BACKGROUND OF THE INVENTION

Cryptographic communications systems seek to ensure
both confidentiality and integrity in the delivery of trans-
ferred information which may pass over communications
channels that can be monitored by eavesdroppers. Such
communications channels find widespread use for this pur-
pose and include local area networks and wide area net-
works such as the Internet. Confidentiality relates to the
ability of the communications system to transfer the infor-
mation from a sender to an intended receiver without
eavesdroppers being able to interpret or decipher the trans-
ferred message. Integrity relates to the requirement that the
intended receiver be provided proof that the transferred
information came from the person who claims to have sent
it and further that the transferred information has not been
altered during transmission.

In general, cryptographic systems include symmetric and
asymmetric systems. In a symmetric cryptographic system,
the sender and recipient agree to have a common encoding
and decoding key which is exchanged and kept secret from
the eavesdropper. The key must be exchanged in a secure
fashion. In the asymmetric system, also known as the
“public-key cryptosystem,” it is not necessary for the sender
and recipient to agree upon an enciphering key before hand.
Furthermore, the asymmetric system provides for a manner
of creating in a digital document a recognizable, unforge-
able, document-dependent, digital signature whose authen-
ticity the signer cannot later deny. This latter feature satisfies
the integrity requirement of cryptographic communications
systems.

In the asymmetric “public-key cryptosystem,” each user
generates a private key/public key pair, Thus for example, a
first user A generates a private key/public key (X, Y) pair
and a second user B generates a private key/public key (X,
Yjp). For each public key Y, the private key X is uniquely
determined by the application of an algorithm such as RSA
to the private key X. Furthermore, it is computationally
infeasible for the eavesdropper to compute the private key X
from the public key Y. Each user A and B publishes their
respective public keys Y, and Y. When user A wishes to
send user B a confidential message over an untrusted com-
munications channel, user A looks up user B’s public key Y
and generates a ciphertext message based upon Y. User B
deciphers the ciphertext message by applying X, to the
ciphertext. Since X is not derivable from Y in a practical
way, only user B can decipher the message sent to him by
user A.

Advantageously, the asymmetric cryptographic system
requires that each user post only one public key Y,. In
contrast the symmetric system requires that each pair of
users share a private key. The asymmetric cryptographic
system therefore drastically reduces the number of keys
needed and further eliminates the need for the secure and
private sharing of private keys.

20

30

35

40

45

50

55

60

65

2

However, the computations required to implement an
asymmetric cryptographic system, such as modular expo-
nentiation in the RSA system, are CPU intensive and there-
fore expensive. While such computations are practical and
can be implemented in software, as a practical matter, more
CPU resources are required to validate a purchaser’s credit
card, for example, than optimally desirable for a merchant
having to perform such validation for hundreds of customers
at a time.

Currently, cryptography is perceived as a difficult and
expensive technology. This thinking has lead to system
designs and engineering tradeoffs that tend to minimize the
use of cryptography, and especially public-key operations.
This received wisdom is no longer accepted. In accordance
with a preferred embodiment, many influences have made
cryptography easy and cheaper. These include the profes-
sionalization of cryptography, the creation and distribution
of textbooks, the algorithmetic advances made by crypto-
graphic researchers and engineers, the rise of e-commerce
and wireless infrastructures which have a seemingly endless
appetite for cryptographic services, the entry of many young
people into the field, and the easing of government export
controls.

Key and Encryption Technology

In a public key encryption scheme, cryptographic keys
occur in pairs: one of the pair is a private key that is kept
confidential, and the other of the pair is a public key that can
be made available to anyone. When data is encrypted using
one of the keys (either the public key or the private key), the
other key must be used to decrypt the data. For example,
resource A encrypts data using a private asymmetric cryp-
tographic key belonging to A. Resource A makes the cor-
responding public asymmetric cryptographic key available
publicly. The only key that can properly decrypt the data is
the public key corresponding to the private key with which
the data was encrypted. When resource B receives the data,
it uses resource A’s public key to decrypt the data. If the data
decrypts properly, resource B is certain that only resource A,
the sole holder of the corresponding private key, could have
encrypted the data. In this way, resource B knows that the
data must have originated from resource A, i.e., that the data
purportedly from resource A is authentic.

Special purpose hardware devices are available to per-
form modular exponentiation. These hardware devices have
traditionally been packaged for use with discrete servers.
Alternatively, the devices are integrated onboard the server.
In this manner cryptographic computations may be acceler-
ated. The purchase and installation of these hardware
devices is an economically feasible solution to the costly and
CPU intensive computational requirements of public key
cryptography for users having an extensive customer base
and sufficient capital. However, this solution is not practical
to users lacking these criteria and yet requiring quick
computation of public-key operations.

Therefore what is needed is a system by which users
lacking sufficient resources to purchase special purpose
hardware devices for performing cryptographic computa-
tions can economically purchase a service for providing
such computations. Preferably the cryptographic services
are deliverable over the Internet and outperform similar
operations performed by a standalone device in software
taking into account network latencies. Also offloading the
cryptographic operations frees up the user’s computer to
perform other tasks.

US 7,051,199 Bl

3
DISCLOSURE OF THE INVENTION

A system, method and article of manufacture are provided
for affording a cryptographic service utilizing a server on a
network. Initially, a client is identified utilizing the network.
A first key is established, and a tunnel is generated on the
network. Thereafter, information is received at the server
from the client utilizing the tunnel. Such information is
encrypted by the client using the first key. At the server,
cryptographic work is performed using the first key. For
purposes of this invention, a tunnel is a communication link
formed by a cryptographic association which refers to a
shared key or key pair.

In one embodiment of the present invention, a second key
is encrypted by the client using the first key at the server. The
second key comprises at least one parameter for the work
performed by the server, such as keys, messages and cypher-
text. In another embodiment of the present invention, the
work includes cryptographic services such as modular expo-
nentiation. After the work has been performed, the work
results may be decrypted by the client using the first key.

In still yet another embodiment of the present invention,
the first key may comprise an encryption key for a symmet-
ric cipher or an asymmetric cipher. Further, the second key
may include an encryption key for a public key algorithm or
a RSA algorithm.

In one aspect of the invention, payment for the crypto-
graphic service is based upon a fixed fee. In another aspect
of the invention, payment is based upon a per operation
payment system. In yet another aspect of the invention,
payment is based upon a combination of a fixed fee and a per
operation payment system.

In this way, the disclosed system, method and article of
manufacture provides for outsourcing cryptographic opera-
tions using dedicated cryptographic servers. The system,
method and article of manufacture thereby provides for cost
effective cryptographic capabilities to users unable to pur-
chase special purpose accelerators but that require fast
computational turn around time and provide cryptographic
operations in a pervasive manner similar to current e-com-
merce activities.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects and advantages
are better understood from the following detailed description
of'a preferred embodiment of the invention with reference to
the drawings, in which:

FIG. 1 illustrates a representative hardware environment
in accordance with one embodiment of the present inven-
tion;

FIG. 1A is a block diagram of a cryptoserver architecture
in accordance with a preferred embodiment;

FIG. 1B illustrates a cryptographic network architecture
in accordance with a preferred embodiment;

FIG. 1C illustrates an illustrative system with a plurality
of components in accordance with one embodiment of the
present invention;

FIG. 2 is a schematic diagram illustrating a network of
computers similar to that shown in FIG. 1 in accordance
with a preferred embodiment;

FIG. 3 is a schematic diagram illustrating the nodes of the
network of computers shown in FIG. 2 in accordance with
a preferred embodiment;

FIG. 4 is a schematic diagram illustrating a node of the
network of computers shown in FIG. 2 in accordance with
a preferred embodiment;

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 is a flowchart for a process for providing a
cryptographic service utilizing a network in accordance with
an embodiment;

FIG. 6 is a diagram illustrating the exchange of informa-
tion between the client and the server in accordance with the
method set forth during reference to FIG. 5;

FIG. 7 is a flowchart of a process for pricing a crypto-
graphic service according to one embodiment of the present
invention;

FIG. 8 illustrates a process for hiding a query to a database
in accordance with an embodiment of the present invention;

FIG. 9 is a flow diagram of a process for a Clarke Tax
model according to one embodiment of the present inven-
tion;

FIG. 10 is a flowchart of a process for pricing a crypto-
graphic service based on a compactness of a cryptographic
message in accordance with an embodiment of the present
invention;

FIG. 11 is a flowchart of a process for enhancing com-
petition among cryptoservers in accordance with a preferred
embodiment;

FIG. 12 is a flowchart depicting a process for pricing a
cryptographic service on a network utilizing one or more
cryptoservers in accordance with a preferred embodiment;

FIG. 13 is a flow diagram of a process for auditing a
security provision on a network utilizing a cryptoserver in
accordance with a preferred embodiment; and

FIG. 14 is a flowchart illustrating a process for auditing a
security provision of a cryptographic service on a network
utilizing a cryptoserver in accordance with a preferred
embodiment.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

A preferred embodiment of a system in accordance with
the present invention is preferably practiced in the context of
a computer such as an IBM compatible computer, Apple
Macintosh computer or UNIX based system. One of ordi-
nary skill in the art will readily comprehend that routers,
switching hardware and digital telephony systems provide
the necessary computing capacity for hosting a preferred
embodiment. A representative hardware environment is
depicted in FIG. 1, which illustrates a typical hardware
configuration of a workstation in accordance with a pre-
ferred embodiment having a central processing unit 110,
such as a microprocessor, and a number of other units
interconnected via a system bus 112.

The workstation shown in FIG. 1 includes a Random
Access Memory (RAM) 114, Read Only Memory (ROM)
116, an 1/O adapter 118 for connecting peripheral devices
such as disk storage units 120 to the bus 112, a user interface
adapter 122 for connecting a keyboard 124, and/or other user
interface devices such as a touch screen (not shown) to the
bus 112, communication adapter 134 for connecting the
workstation to a communication network 135 (e.g., a data
processing network) and a display adapter 136 for connect-
ing the bus 112 to a display device 138. The system also has
crypto hardware incorporated into the architecture.

The workstation typically has resident thereon an oper-
ating system such as the Microsoft Windows NT or Win-
dows/95 Operating System (OS), the IBM OS/2 operating
system, the MAC OS, or UNIX operating system. Those
skilled in the art will appreciate that the present invention
may also be implemented on platforms and operating sys-
tems other than those mentioned. A preferred-embodiment’is

US 7,051,199 Bl

5

written using the C and C++ languages and utilizes object
oriented programming methodology.

With the concepts of composition-relationship, encapsu-
lation, inheritance and polymorphism, an object can repre-
sent just about anything in the real world. In fact, one’s
logical perception of the reality is the only limit on deter-
mining the kinds of things that can become objects in
object-oriented software. Some typical categories are as
follows:

Objects can represent physical objects, such as automo-
biles in a traffic-flow simulation, electrical components
in a circuit-design program, countries in an economics
model, or aircraft in an air-traffic-control system.

Objects can represent elements of the computer-user
environment such as windows, menus or graphics
objects.

Objects can represent an inventory, such as a personnel
file or a table of the latitudes and longitudes of cities.

Objects can represent user-defined data types such as
time, angles, and complex numbers, or points on the
plane.

Objects can encapsulate keys, hardware, protocol, cryp-
tographic accelerators and other cryptographic entities.

With this enormous capability of an object to represent
just about any logically separable matters, OOP allows the
software developer to design and implement a computer
program that is a model of some aspects of reality, whether
that reality is a physical entity, a process, a system, or a
composition of matter. Since the object can represent any-
thing, the software developer can create an object which can
be used as a component in a larger software project in the
future.

A cryptoserver in accordance with a preferred embodi-
ment is implemented in C++. One of ordinary skill in the art
will readily comprehend that Java could have been used as
an enabler, however, there are some enhancements to Java
that are required to provide appropriate infrastructure. These
enhancements, provided in accordance with a preferred
embodiment, address problems including: lack of suitable
middleware, poor performance characteristics of present
Java compilers, difficulty of efficient interfacing to vendor
libraries written in the C programming language, and a lack
of a complete Unix system call interface.

In order to simplify the cryptoserver, “shim” libraries are
utilized to normalize the interface the server utilizes to
interface to the heterogeneous cryptographic hardware
accelerators utilized in accordance with a preferred embodi-
ment. This architecture allows the removal from the server
of any task-specific logic yet compensates for any differ-
ences in feature support between various accelerator drivers
and a common interface presented to cryptoserver clients.
For example, the shim libraries were necessary to normalize
byte order, handle support for negative numbers, handle
exponents greater than the modulus and similar tasks. Many
hardware accelerators have intermittent or no support for
such inputs since they do not occur when utilizing standard
RSA. However, as technologies like the cryptoserver reduce
the cost of modular exponentiations, cryptographic algo-
rithms and protocols considered too costly and complex for
practical use will be used, and these algorithms will require
feature shims in accordance with the preferred embodiment.
Each hardware “shim” is responsible for any initialization
required by the hardware it manages, and can provide
information to the server about the capabilities of that
hardware. This information is utilized by the server for
sophisticated scheduling of work items on particular accel-
erators.

20

25

30

35

40

45

50

55

60

6

In order to make effective use of the hardware and
maximize scalability, the number of threads on the cryp-
toserver can be configured to manage each cryptographic
accelerator. This is varied based on the inherent parallelism
of each accelerator board, the architecture of the driver and
any vendor libraries used to interface with the accelerator
board. The server has a default allocation of one thread per
cryptographic processing unit. The server also allocates a set
number of threads for the Remote Procedure Call (RPC)
subsystem. A number of work items are preallocated into an
idle queue. Then, as cryptographic requests arrive, they are
decrypted and placed in a work item which is moved onto
the work queue. After the cryptographic accelerator has
processed the request, the work item is moved onto the reply
queue and the reply is encrypted before it is transmitted.
Multiple threads are utilized to process requests and replies
to prevent either stage from becoming a bottleneck. FIG. 1A
is a block diagram of a cryptoserver architecture in accor-
dance with a preferred embodiment. A client accesses the
cryptoserver through the internet 150 or other communica-
tion device with a request 152 which is intercepted by one
of the request handler threads 156 and placed on the idle
queue 158 for processing by the work queue 160 and
ultimate input to the cryptographic accelerator 168. Infor-
mation accompanying the request is used to determine the
number of worker threads 164 assigned to process the
cryptographic request as discussed above. Moreover, the
particular characteristics of the cryptographic accelerator are
normalized utilizing one or more “shim” as discussed above.
A reply 162 is generated by the worker threads 164 and one
or more of the reply handler threads 156 are used to generate
the reply 154 transmission which is returned via the internet
150 or other communication facility.

An additional optimization in accordance with a preferred
embodiment allows the RPCs to receive array arguments
that are broken down into multiple work items as they are
placed on the work queue 160. This enables the separate
operations to occur in parallel in accordance with a preferred
embodiment. The RPC cannot return results until all of the
parallel threads have completed, so one of the work items is
canonical per RPC request and no canonical work item is
moved onto the reply queue until all of the operations are
completed.

In accordance with a preferred embodiment, the cryp-
toserver utilizes generally available hardware. The customi-
zation aspects in accordance with a preferred embodiment
are performed in software. However, one of ordinary skill in
the art will readily comprehend that hardware could be
utilized to customize or optimize various aspects without
departing from the spirit and scope of the claims. A Sun
Ultra-10 workstation running Solaris 7 with an Atalla
AXI.200 accelerator is utilized in accordance with a pre-
ferred embodiment. The AXI1.200 has a maximum through-
put of 267, 1024-bit private key RSA operations per second.
As discussed above, the architecture of the software utilizes
“shims” to normalize the differences in the accelerator
hardware. The Sun workstation was selected because several
cryptographic accelerator vendors support Solaris on
SPARC hardware. The cryptoserver can be enhanced to
utilize a multiprocessor to more efficiently handle indepen-
dent cryptographic requests in parallel. FIG. 1B illustrates a
cryptographic network architecture in accordance with a
preferred embodiment. A cryptography server 170 attaches
to the internet 172 or other communication medium to
enable clients 174 & 176 to send and receive information to
be encrypted or decrypted. Symmetric cryptographic accel-
eration hardware 178 is utilized to speedthe éncryption of

US 7,051,199 Bl

7

client cryptoserver communication. This hardware is par-
ticularly useful for DES or triple-DES operations. Faster
block ciphers are effectively accommodated in software
utilized in conjunction with the hardware. In addition,
multiple public key accelerators can be used in parallel to
facilitate a dramatic throughput increase.

FIG. 1C illustrates an exemplary system 180 with a
plurality of components 182 in accordance with one embodi-
ment of the present invention. As shown, such components
include a network 184 which take any form including, but
not limited to a local area network, a wide area network such
as the Internet, etc. Coupled to the network 184 is a plurality
of computers which may take the form of desktop computers
186, lap-top computers 188, hand-held computers 190, or
any other type of computing hardware/software 191. As an
option, the various computers may be connected to the
network 184 by way of a server 192 which may be equipped
with a firewall for security purposes. It should be noted that
any other type of hardware or software may be included in
the system and be considered a component thereof.

Software Architecture

A software architecture in accordance with a preferred
embodiment scales effectively based on the following vari-
ables, including the number of client requests, the amount of
cryptographic hardware available and the number of indi-
vidual clients (security associations) being managed and
utilized. The architecture in accordance with a preferred
embodiment is designed so that individual client requests
must have low overhead, both in terms of network opera-
tions and security association management. Infrequent
operations such as security association negotiation may be
more expensive to compensate. Additional cryptographic
acceleration capability can be added easily to take advantage
of different types of cryptographic accelerators. Finally, the
software is extensible to support different mechanisms for
negotiating security associations and protecting requests on
the wire.

Middleware

A preferred embodiment was implemented utilizing Sun’s
Transport Independent Remote Procedure Call (TI-RPC)
middleware. This software enables multithreaded applica-
tions for scalable service. TI-RPC also supports the Generic
Security Service (GSS) Application Programming Interface
(API) that provides multiple authentication and encryption
technologies for negotiating long-term security associations,
and it supports datagram transports such as UDP. A datagram
is an independent, self-contained message sent over the
network whose arrival, arrival time, and content are not
guaranteed. Datagrams are used because they comply with
the RPC paradigm better than connection-oriented trans-
ports such as TCP and because a datagram based solution
obviated the requirement for complicated connection pool
management logic. The connection pool management logic
becomes very complex as the number of clients exceeds the
number of socket descriptors available in a single Unix
process. Datagrams also minimize transport-related over-
head for clients who may make infrequent calls to the
cryptoserver. One of ordinary skill in the art will readily
comprehend that other middleware choices, most notably
CORBA, could be used without departing from the scope
and spirit of the claims.

A major attraction of this middleware is the availability of
RPCSEC.GSS which provides an interface to the GSSAPI.

20

25

30

35

40

45

50

55

60

65

8

GSSAPI is a pluggable security API which provides a
consistent interface to a variety of different authentication
and encryption technologies. It is one of the few security
technologies to explicitly support negotiation of security
associations over connectionless transport that is capable of
securing communication over such transports. Most impor-
tantly, RPCSEC.GSS provides features essential to provid-
ing long-term security associations to secure RPC-based
requests with a minimum of per-request overhead. Another
substantial advantage of TI-RPC is that it is compatible on
the wire with Sun’s ONC RPC, a widely deployed RPC
protocol that is at the heart of NFS. As such, ONC RPC
implementations are available on a wide variety of plat-
forms.

Security Association Negotiation

There are a variety of approaches to generating security
associations between a client and a cryptoserver in accor-
dance with a preferred embodiment. The simplest is a pure
key agreement protocol (e.g. Diffie-Hellman) to produce a
shared symmetric key used to encrypt further communica-
tion between a client and a server. In a production server in
accordance with a preferred embodiment, session keys will
be generated every one to twenty-four hours per client in
actual use. If the keys expire uniformly across an hour, even
with 10,000 clients and one hour session expirations, this
implies three key agreements, with associated modular
exponentiations, per second, or one percent of the capacity
of a single AX[.200. To produce the benchmark numbers
discussed below, a 192-bit Diffie-Hellman key agreement
mechanism was utilized which is distributed with TI-RPC.
For a symmetric cipher in accordance with a preferred
embodiment, triple DES is utilized. Using triple-DES is a
very conservative choice, as almost all other ciphers will
offer better performance.

Other approaches to negotiating security associations
have also been explored. For a preferred embodiment, a
client must have assurance that the machine is communi-
cating with a trustworthy cryptoserver. Therefore, the server
must be able to authenticate itself to the client. If the service
is freely given, the client need not authenticate itself to the
server. In order to provide this base level of functionality, a
public key based GSS mechanism and a certification author-
ity trusted by all clients is utilized to certify the cryptoserver.
Alternative embodiments for authentication mechanisms
utilize client authentication to control access to a cryp-
toserver. PKlI-based or Kerberos-based authentication
mechanisms can identify clients authorized to use the cryp-
toserver. Forms of digital cash can be used to allow clients
to pay for cryptographic operations by both number of
operations or quality of service (speed, latency, etc.) as
described below. Thus, clients could set up an account as
part of security association negotiation, or could include
payment tokens on a per-request basis.

Client Interface to the Cryptoserver

The client interface to the cryptoserver in accordance with
a preferred embodiment is designed to allow sophisticated
clients to utilize one or more servers while minimizing
network-related overhead, and to make it easy to incorporate
cryptoserver support into legacy client packages. The inter-
face is also designed to allow requests to pass through to the
cryptographic hardware with as few copy operations as
possible, and to be broken up in various ways to interface
efficiently to heterogeneous accelerator hardwaresincorpo-
rated into the cryptoserver.

US 7,051,199 Bl

9

The interface to the cryptoserver is written in Sun’s
rpegen RPC specification language. Here is an example of
the code with non-essential details about data types and
benchmarking support removed.

Program QCS_RPC__PROG {
Version QCS_RPG__VERS {
QCS__value_res RPCMODEXP (QCS__mod__exp__coef,
QCS__bignum) = 1;
QCS_val_arrary_ res RPRCMODEXPARRAY
(QCS_mod__exp_coef, QCS__bignum__ array) = 2;
QCS__value__res RPCRSAPCRTEXP (QCS__rsa_ private_ key,
QCS__bignum) = 3;
QCS__val_array res RPCRSACRTARRAY
(QCS_rsa_ private_key, QCS__bignum__ array) = 4;
QCS__val_array. res RRCMULTIMODEXPARRAY
(QCS_mod__exp_ coef array, QCS__bignum_ array) = 5;
int RPRCGETMAXMODULUSLEN(void) = 7;
r=1
} = 0x20000105;

In the above example, RPCMODEXP is a simple modular
exponentiation. RPCMODEXPARRAY provides a more
efficient way to encrypt multiple values with the same key.
RPCRSAPCRTEXP and RPCRSACRTARRAY are the cor-
responding calls, but using Chinese Remaindered exponen-
tiation. Finally, RPCMULTIMODEXPARRAY provides a
more communication efficient mechanism for raising mul-
tiple bases to multiple powers (modulo the corresponding
moduli).

FIG. 2 is a schematic diagram illustrating a network of
computers similar to that shown in FIG. 1, wherein a
plurality of users 200 interacts in the context of the present
invention over a network 202 such as the Internet. In a
typical scenario, users 200 perform public and private key
cryptography to achieve confidential communications over
the network 202. As noted earlier, hybrid systems include an
asymmetric public key distribution and a plurality of sym-
metric private key transactions associated therewith.

With reference to FIGS. 3 and 4 and in an embodiment of
the present invention, a cryptographic server 210 is located
at a fast and well-connected node 220 on the network 202.
The cryptographic server 210 includes means for performing
CPU intensive cryptographic computations. The crypto-
graphic server 210 may include special purpose hardware
devices for performing such operations. The cryptographic
server 210 may be preferably located at a high traffic node
on the network 202 to reduce network latencies and to
thereby provide faster turn around time to requests for
cryptographic computations from users.

In an illustrative embodiment of the present invention, a
user wishes to have the capability of performing high speed
cryptographic computations to service its customers. The
user contracts or otherwise arranges with the operators of
cryptographic server 210 to perform cryptographic compu-
tations at the cryptographic server 210. In another aspect of
the invention, the user pays a fixed fee to the operators of
cryptographic server 210 in exchange for cryptographic
computations. In a further aspect of the invention, the user
pays the operators of cryptographic server 210 on a per use
basis.

FIG. 5 is a flowchart of a process 500 for providing a
cryptographic service utilizing a network in accordance with
an embodiment of the present invention. Initially, in opera-
tion 502, a client is identified by a server utilizing the
network. The client may include a computer such as that
shown in FIG. 1, or any computing mechanism. In another

20

25

30

40

45

50

55

60

65

10

exemplary embodiment of the present invention, the client
may include a printer (or a digital copier, etc.) so that the
printer, etc. may be able to digitally sign its own output on
the fly without expensive cryptographic hardware.

A first key is then established in operation 504. In one
embodiment of the present invention, the first key may
comprise an encryption key for a symmetric cipher or an
asymmetric cipher. The establishment of the first key may be
accomplished by exchanging messages between the server
and the client. In the alternative, the key may simply be
stored in a database or the like. It should be understood that
first key may be established in any desired manner.

In operation 506, a tunnel is generated on the network.
Thereafter, information is received at the server from the
client utilizing the tunnel, as indicated in operation 508.
Such information is encrypted by the client using the first
key. At the server, cryptographic work is performed. See
operation 510. The work may include cryptographic services
such as modular exponentiation. In such embodiment, Equa-
tion #1 may be employed.

Equation #1

m*® mod n, where
m = message
e, n = key

After the work has been performed, the work results may
be encrypted using the first key and sent to the client where
it may be decrypted by the client using the first key. A second
key comprising at least one parameter for the work per-
formed by the server, such as keys, messages and cyphertext
can also be sent to the server. In terms of a business model,
payment for the cryptographic service may be based upon a
fixed fee. In another aspect of the invention, payment is
based upon a per operation payment system. In yet another
aspect of the invention, payment is based upon a combina-
tion of a fixed fee and a per operation payment system.

FIG. 6 is a diagram illustrating the exchange of informa-
tion 600 between the client and the server in accordance with
the method set forth during reference to FIG. 5. As shown,
the first key is initially established between the client and
server in operation 602. Thereafter, in operation 604, infor-
mation is received at the server from the client. As set forth
earlier, such information is encrypted by the client. A second
key also can be sent to the server from the client in operation
606. Once the work has been performed, it is sent to the
client from the server in operation 608. In an alternative
embodiment, a cryptographic server could be located in a
user’s server pool, thereby providing for reduced network
latency. The management of the cryptographic server would
preferably be outsourced.

The present inventors calculate that in the near future a
standard workstation equipped with special purpose cryp-
tographic calculation devices is able to perform 4000 1024-
bit RSA operations per second at a complete hardware cost
of $7000. Support for 4000 1024-bit RSA operations per
second requires approximately 12 Mbits per second of
network bandwidth. It is estimated that obtaining this band-
width at a well-connected traffic aggregation node such as
node 220 would cost approximately $5000 per month. On a
smaller scale, 800 1024-bit operations per second would
require 2.4 Mbits per second of network bandwidth ata cost
of $1500 per month.

US 7,051,199 Bl

11

If hardware costs and one-time costs are amortized, it is
estimated that a total monthly cost of $6350 for 4000 RSA
operations per second and $3350 for 800 RSA operations per
second can be achieved. There are 2,592,000 seconds in a
month so the cost per cryptographic operation is 6x1075
cents at 4000 operations per second and 1.5x10™* cents at
800 operations per second.

Benchmarks

A microbenchmark that performed a modular exponen-
tiation using the Atalla-supplied libraries and compared the
results to the correct value was written. The same compu-
tation was executed on a client of the cryptoserver in
accordance with a preferred embodiment. The single
threaded case reports are presented below both with and
without securing the wire with triple DES. The numbers are
reported as averages and in all cases the variance was
negligible.

MACHINE THREADS LATENCY (ms) OPERATIONS/SEC
Local accelerator 1 91.5 10.9
Remote crypto 1 92.0 10.9
(unsecure)

Remote crypto 1 93.4 10.7
(secure)

Without encryption, our software delivers full throughput
of the accelerator. Adding triple-DES incurs a 2% reduction
in throughput. While the single threaded numbers show that
the AXI.200 has a large latency, it has 24 modular expo-
nentiators that can run in parallel. Many applications of the
cryptoserver (e.g., supporting SSL) are more concerned with
throughput than latency. For the cross machine cases, the
client is configured to make requests across fifty threads.

MACHINE THREADS OPERATIONS/SEC
Local accelerator 24 261
Local accelerator 40 265
Remote crypto (unsecure) 24 259
Remote crypto (secure) 24 259
Remote crypto (unsecure) 40 265
Remote crypto (secure) 40 265

Note that although 24 threads should be enough to satu-
rate the AXL.200, in practice it is not. Adding threads above
40 does not result in increased performance. Also note that
the exponent has a weight of 511 (i.e., there are 511 “1” bits
in the exponent), and the time per operation depends on the
weight of the exponent. The important point to note is that
the penalty for using a cryptoserver is minimal to non-
existent.

Alternative Embodiments

Viewing cryptography as a network service changes all
the rules regarding the cost of cryptography. Then, since
cryptography is not computationally prohibitive, it is much
more convenient to incorporate into applications. Applica-
tions using abundant public key operations including secure
communication services for dynamic coalitions, private
database retrieval and other applications in which crypto-
graphic services naturally fit are enabled since the cost is no

20

25

30

35

40

45

50

55

60

65

12

longer prohibitive. Cryptoserver client support for standard
cryptographic APIs are also supported utilizing this novel
architecture. In accordance with a preferred embodiment,
each request includes the client’s private key. Alternatively,
if the cryptoserver already knows the client’s private key,
then the request may include an authentication token that
demonstrates who the request is coming from and that the
request is fresh. This capability would require a more
trustworthy cryptoserver, but it would reduce the bandwidth
required for the network by nearly half.

Although we need to trust the cryptoserver with the
private key, we do not need to trust the cryptoserver with the
message or ciphertext to be processed. These can be pro-
tected by a method known as blinding, which is a pre-
processing step (e.g., randomization) compatible with the
cryptographic operation to be performed. After the results of
the cryptographic operation on the blinded data are returned,
the user can perform a corresponding post-processing step to
unblind them. This is particularly efficient for RSA signa-
tures with low exponent, but it is useful in many other cases
as well.

Since the server supports a heterogeneous collection of
hardware accelerators running concurrently, it would be a
simple modification to use one accelerator to double check
the results delivered by another accelerator. By using dif-
ferent accelerators, a single accelerator could not produce a
doctored result along with a doctored inverse check result.
The tradeoff between paranoia and throughput could be
easily managed by checking a user-selectable fraction of
results. By selecting hardware accelerators designed and
manufactured in disjoint countries, no single government
would be in a position to compromise an RSA operation.
Such a system would be highly resistant to attacks, including
fault injection. Similarly, clients could issue RPCs to more
than one server. One could, for example, use servers oper-
ated by different organizations, or servers located in multiple
countries.

A preferred embodiment has been discussed that enables
public key cryptography as a service offered over untrusted
networks. This architecture has been shown to offload work
from clients, provide greater utilization of cryptographic
accelerators by sharing them among many clients, and it has
acceptably small performance overhead. In addition, it
enables new security applications that were previously con-
sidered too costly.

FIG. 7 is a flowchart of a process 700 for pricing a
cryptographic service according to one embodiment of the
present invention. The present invention provides a way of
addressing the costs of privacy, by using a pricing mecha-
nism to guide the user to the right level of resource usage.
The present invention also provides a new business model
for secure services, where a protocol participant pays for
computations in a privacy-scaling manner. In operation 702,
a request for a cryptographic service is received from a user.
Such a “user” can be a person, business, computer executing
a computer program, etc. In optional decision 704, the user
can be allowed to select to pay based on a computational
burden required to perform the cryptographic service, a
privacy level of the cryptographic service, and/or a speed of
performing the cryptographic service. If the user is allowed
to select to pay based on the computational burden, the
privacy level, and/or the speed, the user’s selection is
received in operation 706.

In optional decision 708, the user can be allowed to
specify the privacy level of a high level cryptographic
service. Thus, the user has control of the tradeoffs that are
inherent in many privacy protocolsiThis cis)particularly

US 7,051,199 Bl

13

useful where a user wishes to utilize different levels of
privacy for different data. This also allows different users to
specify their preferred levels of privacy. If the user is
allowed to specify the privacy level, the user’s desired level
of privacy is received in operation 710.

In optional decision 712, the user can be allowed to
specify the speed of performing the cryptographic service. In
this way, a user wishing to send large quantities of data can
help specify how quickly the data can be encrypted and sent.
If the user is allowed to specify the speed, the user’s desired
speed is received in operation 714. It should be kept in mind
that any combination of the functions of operations 704,
708, and 712 can be performed for any user utilizing the
process of the present invention.

With continued reference to FIG. 7, in operation 716, an
identification is made of the computational burdens required
to perform the cryptographic service, the privacy level of the
cryptographic service, and/or the speed of performing the
cryptographic service. The encryption is performed in
operation 718. A price of the cryptographic service is
determined in operation 720 based on the computational
burden, privacy level, and/or speed. Payment for the cryp-
tographic service can be requested and received from the
user in operations 722 and 724, respectively. In one appli-
cation of the present invention, the process of FIG. 7 can be
used for pricing cryptographic services in networked busi-
ness applications. There are a number of security protocols
for which the degree of privacy scales nearly linearly with
the computational burden. Following are three examples:

1. Private Information Retrieval

FIG. 8 illustrates a process 800 for hiding a query to a
database. Imagine that the database is a long string of bits,
and the querier wants to know the value of the jth bit. In
accordance with a preferred embodiment, the querier can
learn the value of the jth bit, while the database never learns
the value of “j”. In operation 802, a database query or other
type of query is received. The querier prepares a special
modulus N and a random base x. The modulus is the product
of two large primes p and q. The primes are selected so that
a certain small prime divides p-1 or g-1. Exactly which
prime is selected is kept hidden from the database. The
privacy of the scheme rests on the assumption that it is
difficult to determine from N what the small factors of p-1
and q-1 are. This is a new hardness assumption for cryp-
tography, but it is a plausible one. Of course, if one knew the
factorization of N then it would be easy to determine the
small factors of p and q, so this new assumption is no harder
than the well-known assumption that factoring is hard.

The querier generates the special modulus N and the
random base X in operation 804. The particular small prime
is used to encode the secret query j. The database computes
a modular exponentiation using n and x, where the exponent
is the product of a number of small primes. Exactly which
small prime is selected is a function of the bits in the
database that are ones and zeros. The final result is a single
value which is no larger than N. The querier takes this final
result and performs a test on it to determine the result of the
query. The test is a modular exponentiation that uses the
result of the query as the base. In operation 806, the querier’s
query is “hidden” among the set of m possible queries (i.e.,
placed in a batch with the other queries).

Notice that the communication between the querier and
the database is the size of a single number no larger than N
no matter how large the database is. Notice that this com-
pression in communication is achieved at the expense of an
increase in computation by both parties. Specifically, both

—

0

20

30

35

45

50

55

14

parties must perform modular exponentiations of a specific
type. These are not modular exponentiations to encrypt,
decrypt, sign or verify a signature. Instead, there are modular
exponentiations in the service of a complex protocol to
perform a sophisticated cryptographic service (private infor-
mation retrieval). The queries are sent to the database or
other data source in operation 808, and responses to the
queries are received in operation 810.

It is possible to reduce the computation for the database
by restricting the database to 100,000 elements and perform-
ing the private information retrieval over that set of bits. This
hides the true query in a smaller set of possible queries. The
communication size remains the same, but the computation
that the database must perform is reduced. The computation
that the database must perform is dominated by the cost of
performing a modular exponentiation where the exponent is
a product of as many small primes as there are ones in that
portion of the database. The smaller the portion of the
database within which the query is hidden, the fewer small
primes in the exponent product, and thus the simpler the
calculation for the database, which is referred to as “per-
tree” pricing. This is very different from having the database
simply retrieve 100,000 answers for the querier. It is a
complex protocol for private information retrieval which
restricts the possible queries over which the protocol takes
place in order to reduce the computational burden on the
service provider. The response to the query is separated from
the responses in operation 812.

One such solution requires a database to perform the
query and the database to each perform about m modular
exponentiations, and reduces the communication to one
round of messages of size log m. This example has many
practical applications, such as allowing a user to get a
real-time stock quote without revealing which stock he or
she is interested in, or query a patent database without
leaking the query to a competitor.

2. Group Authentication

According to an embodiment of the present invention, a
participant proves to be one of a plausible set of m possible
participants without revealing which, where m is a tunable
parameter. There is also a non-interactive version of this
called a “group signature”. An illustrative cryptographic
solution requires the participant and the verifier to each
perform about m modular exponentiations, and exchange
one round of communication of size proportional to m. This
example has many practical applications, including to
enhance the value of recommendation systems.

3. Mix Networks

According to one embodiment of the present invention, a
participant can hide his or her message traffic among other
participants’ messages using a mechanism commonly
known as a mix network. In an illustrative cryptographic
solution the cost is about two hundred modular exponentia-
tions per mix per ciphertext. This example has application
whenever the fact that one user is communicating with
another is revealing. Many other anonymity mechanisms
(such as for anonymous payment, or group authentication)
become worthless if there is no traffic confidentiality. The
bulk of the computational burden for all participants in these
examples can be offloaded to one or more independent
cryptoservers, or to a service provider that has access to its
own cryptoservers. It is natural to consider a pricing model
where the participant pays by the degree of desired privacy.

In various embodiments of the present invention, the
computations that are to be performed by the cryptoserver
can be done generically (that is,[dataindependent ‘pre-

US 7,051,199 Bl

15

computation), or data-dependent but blindable (that is, in a
way that sensitive information is concealed even from the
cryptoservers), or data-dependent and information-leaking
(that is, so that the cryptoserver must be trusted with
sensitive information, although this information is still con-
cealed from the other participants in the actual protocol). In
all of these cases, a pricing model with offloaded computa-
tion to cryptoservers can be instituted, although the security
assumptions for the participants will be different.

The private information retrieval schemes can be done
generically. The group authentication schemes can be done
in a way that is data-dependent but blindable. Some of the
work for the mix networks can be done generically, while
some must be data-dependent and information-leaking.
However, note that the information being leaked to the
cryptoservers in this case are ciphertexts, which threatens
the confidentiality of the fact of the communication but not
the contents.

For the example of a mix network, the participant’s traffic
might be hidden among dummy traffic, or among other
participants’ traffic. In the latter case, all participants in the
mix gain traffic confidentiality. Therefore, a pricing mecha-
nism can be crafted on a value-gained basis to extract more
revenue. An appropriate (fair) pricing mechanism is the well
known “Clarke Tax,” which generalizes the second-price
auction mechanism. The Clarke Tax is designed to encour-
age all participants to state their true evaluation rather than
the strategic evaluation. FIG. 9 is a flow diagram of a
process 900 for a Clarke Tax model according to one
embodiment of the present invention. In operation 902, each
potential participant quotes a value for being part of the mix.
In operation 904, participants are chosen so that the sum of
these values is maximized. In operation 906, each partici-
pant is charged the difference between what this sum is and
what this sum would have been had this participant been
ignored.

An embodiment of the present invention provides a
business model where the user would pay on a steeply
sliding scale according to the amount of compression that
was desired. This is useful for bandwidth-critical applica-
tions such as transmission along a very expensive channel.
Example applications include communication to spacecraft,
or communication over low-power wireless devices. It is
also useful for applications where signed data must be stored
in a constrained location. Examples include signed authen-
tication tokens or electronic cash to be stored on a smart
card, or a signature to be stored as a small glyph on a page.

FIG. 10 is a flowchart of a process 1000 for pricing a
cryptographic service based on a compactness of a crypto-
graphic message. In operation 1002, a request for encrypting
a message, which can include other data, is received. In
operation 1004, the message is encrypted and is also com-
pressed during the encryption. As an option, the encryption
can utilize random bits. An amount of compression of the
message is determined in operation 1006. In operation 1008,
a price of the encryption is determined based on the amount
of compression.

FIG. 11 is a flow diagram illustrating a process 1100 for
making competition among cryptoservers more effective. In
operation 1102, a variable pricing scheme is selected for
charging for a cryptographic service. A network-based cryp-
tographic service is priced using the selected variable pric-
ing scheme in operation 1104. A receipt for the services is
provided in operation 1106. In operation 1108, the crypto-
graphic service is audited.

20

25

30

35

40

45

50

55

60

65

16

Variable Pricing

FIG. 12 is a flowchart depicting a process 1200 for pricing
a cryptographic service on a network utilizing one or more
cryptoservers. In operation 1202, a request for a crypto-
graphic service is received from a user utilizing a network.
The request is received by a cryptographic service provider.
The cryptographic service provider can be, for example, an
entity in communication with the cryptoservers. In operation
1204, the cryptographic service provider can select one or
more of a plurality of cryptoservers, including its own
cryptoserver, to perform the cryptographic service.

The cryptographic service is performed in operation 1206.
In operation 1208, a contract is generated based on a
variable pricing scheme in response to the request. In
operation 1210, the contract is sent from the cryptographic
service provider to the user utilizing the network.

Variable pricing is a mechanism that is effective for cases
(a) and (b). The price that a cryptoserver sets can depend on
how idle it is at the moment or at the future time of the
contracted service, how far away it is in the network, the
current congestion in the network, how reliable and confi-
dential the cryptoserver has been in the past (based on
recommendation systems as discussed elsewhere in the
specification), and other factors.

Auctions are an alternative pricing mechanism that can be
either demand-driven (bids by customers for cryptoservice)
or supply-driven (bids by cryptoservers for jobs). More
generally, markets are possible for generic cryptocommodi-
ties, including futures contracts. These pricing mechanisms
have the effect of creating a more equitable market for the
consumer in case (a). In case (b), the effect is to create
incentives that will lead rational consumers to balance the
load more effectively among the various cryptoservers of the
distributed service.

Note that the auctions (or markets) can be conducted
securely as a cryptographic protocol by one or more of the
cryptoservers. This would allow the participants a high
degree of assurance and privacy, while offloading most of
the computational burden. Of course, this would be advan-
tageous when bidding for jobs that were significantly larger
than the cost of executing the secure auction protocol itself
(e.g., following one common approach from the literature
about k n log n modular multiplications, where k is the
number of auction participants, and n is the number of bits
in the bidding range).

Recommendation System

Recommendation systems can be helpful for keeping
track of the past reliability, speed and confidentiality of
cryptoservers. Any number of generic recommendation sys-
tems for generic services can be adapted to this scenario. Of
special interest are approaches that exploit the nature of the
cryptoservice. For example, a cryptoserver can give every
customer a receipt for every job, digitally signed at a tiny
extra cost (i.e., a fraction of the computational burden of the
job itself). The receipt can include such information as a
one-way hash of the results of its computations, the time and
duration of the computations, a description of the compu-
tations, the identities or pseudonyms of the cryptoserver and
the customer. These signed receipts are useful to back up
claims or complaints by customers in a non-repudiable
manner.

Auditing

Auditing can help establish the past reliability, speed and
confidentiality of cryptoservers. Here too, any generic
method for auditing any on-line service could be used, but
there are special opportunities for auditing-alcryptoservice.

US 7,051,199 Bl

17

One embodiment of the present invention has two or more
auditors use a secure distributed protocol to generate a
signing key, and which give that key to a cryptoservice in a
way that no single auditor knows what it is. The auditors
could then try to have the cryptoservice sign a known set of
messages using that key. Any other signed message using
that key would be a strong indication that the cryptoserver
failed, because the only alternative explanations would be
that the key was cracked (e.g., the RSA modulus was
factored) or that some threshold number of auditors col-
luded.

FIG. 13 is a flow diagram of a process 1300 for auditing
a security provision on a network utilizing a cryptoserver.
An example of such a security provision relates to access
control of the cryptoserver and/or integrity of the cryp-
toserver. In operation 1302, a cryptographic key is obtained
such as by obtaining a key from a trusted source or gener-
ating a key. In operation 1304, a plurality of users are
allowed to request that a cryptoserver use the cryptographic
key to sign a message in violation of a security provision.
Such users can be system operators or administrators, other
cryptoservers, and/or programs executed by the cryp-
toserver, for example. In operation 1306, it is determined
whether the cryptoserver signed the message in response to
the request. An indication of failed security integrity is
provided in operation 1308 upon determining that the cryp-
tographic server has signed the message. As an option, a kill
command can be executed by the cryptoserver in operation
1310 upon receiving the indication of failed security integ-
rity, as discussed in more detail below.

Another embodiment of the present invention makes use
of Lipton’s notion of “uncheatable benchmarks” that are
moderately hard to compute but easy to verify, as known to
those skilled in the art. In one of Lipton’s constructions, the
cryptoserver must perform m modular exponentiations
where m is a tunable parameter, while the entire computation
can be verified with only two modular exponentiations. This
is based on RSA computations, where the verifier knows the
factorization of the modulus. Here again, the use of distrib-
uted key generation by two or more auditors makes these
benchmark tests even more credible.

Another embodiment of the present invention that benefits
from distributed key generation checks for the presence of
unintentional emmission channels in the cryptoservers. FIG.
14 is a flowchart illustrating a process 1400 for auditing a
security provision of a cryptographic service on a network
utilizing a cryptoserver. Again, the security provision can
relate to access control and/or integrity of the cryptoserver,
for example. In operation 1402, a cryptographic key that is
generated by two or more users is received by a cryptoserver
and, in operation 1404, is utilized to sign a message. Again,
the users can be system operators or administrators, other
cryptoservers, and/or programs executed by the cryp-
toserver, for example. In operation 1406, the cryptoserver is
monitored and one or more attempts are made to determine
the cryptographic key from behavior of the cryptoserver
while the cryptoserver signs the message. Preferably, the
cryptoserver is monitored by another, independent user. If
the cryptographic key is determined, a notification of failed
integrity is sent to the cryptoserver in operation 1408. The
notification can be generated by the user monitoring the
cryptoserver. A kill command can be executed by the cryp-
toserver in operation 1410 upon receiving the indication of
failed security integrity, as described below.

Particularly for scenario (c), in which cryptoservers are
autonomous or semi-autonomous and trying to self-govern,
it is desirable to design a loosely coupled distributed net-

20

25

30

35

40

45

50

55

60

65

18

work of cryptoservers that monitor each other’s perfor-
mance. The monitoring can be done by having the cryp-
toservers themselves act as recommenders or auditors as
described elsewhere in this specification. It is possible to
have cryptoservers designed to respond to a suitably for-
matted kill command, which would cause them to delete
some or all of their stored keys, for example, and/or shut
down some or all of their functionality. For example, a
suitable kill command might need to be signed by a thresh-
old number of other cryptoservers. This protects against
routine discovery of a poorly functioning cryptoserver in a
decentralized environment. A variation of this scenario can
have the cryptoserver audit itself, and issue a kill command
if its computations did not pass its verification tests.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of a preferred embodiment should not be limited
by any of the above described exemplary embodiments, but
should be defined only in accordance with the following
claims and their equivalents.

What is claimed is:

1. A method for providing a cryptographic service utiliz-
ing a server on a network, comprising:

(a) identifying, by the server, a client utilizing the net-

work;

(b) generating a tunnel on the network using a first key;

(c) receiving a second key at the server from the client

utilizing the tunnel, wherein the second key is
encrypted by the client using the first key, the second
key being a private key of a key pair;

(d) receiving a speed specification for the cryptographic

service; and

(e) performing the cryptographic service at the server for

the client, responsive to the speed specification, the
server using the second key to perform the crypto-
graphic service, whereby the server off-loads a com-
putational burden associated with the cryptographic
service from the client.

2. A method as recited in claim 1, wherein the second key
is encrypted by the client using the first key.

3. A method as recited in claim 2, wherein the second key
comprises at least one parameter for the cryptographic
service performed by the server.

4. A method as recited in claim 1, wherein the crypto-
graphic service includes modular exponentiation.

5. A method as recited in claim 1, her comprising the step
of transmitting cryptographic service results to the client.

6. A method as recited in claim 5, further comprising: the
step of encrypting the cryptographic service results utilizing
the first key.

7. A method as recited in claim 5, wherein the crypto-
graphic service results are transmitted to a third party.

8. A method as recited in claim 1, further comprising the
step of charging a fee for the cryptographic service per-
formed by the server.

9. A method as recited in claim 8, wherein the fee is
charged to the client.

10. A method as recited in claim 1, wherein the first key
comprises an encryption key for a symmetric cipher.

11. A method as recited in claim 1, wherein the first key
comprises an encryption key for an asymmetric cipher.

12. A computer program embodied on a computer read-
able medium for providing a cryptographic service utilizing
a server on a network, comprising:

(a) a code segment for identifying, by the server; a'client

utilizing the network;

US 7,051,199 Bl

19

(b) a code segment for generating a tunnel on the network
using a first key;

(c) a code segment for receiving a second key at the server
from the client utilizing the tunnel, wherein the second
key is encrypted by the client using the first key, the
second key being a private key of a key pair;

(d) a code segment for receiving a speed specification for
the cryptographic service; and

(e) a code segment for performing the cryptographic
service at the server for the client, responsive to the
speed specification, the server using the second key to
perform the cryptographic service, whereby the server
off-loads a computational burden associated with the
cryptographic service from the client.

13. A computer program as recited in claim 12, wherein
the second key is encrypted by the client using the first key,
and further comprising a code segment for receiving the
second key at the server.

14. A computer program as recited in claim 13, wherein
the second key comprises at least one parameter for the
cryptographic service performed by the server.

15. A computer program as recited in claim 12, wherein
the cryptographic service includes modular exponentiation.

16. A computer program as recited in claim 12, further
comprising a code segment that transmits the cryptographic
service results to the client.

17. A computer program as recited in claim 16, further
comprising a code segment that encrypts the cryptographic
service results utilizing the first key.

20

25

20

18. A system for providing a cryptographic service uti-
lizing a server on a network, comprising:

(a) computer logic for identifying, by the server, a client
utilizing the network;

(b) computer logic for generating a tunnel on the network
using a first key;

(c) computer logic for receiving a second key at the server
from the client utilizing the tunnel, wherein the second
key is encrypted by the client using the first key, the
second key being a private key of a key pair;

(d) computer logic for receiving a speed specification for
the cryptographic service; and
(e) computer logic for performing the cryptographic ser-
vice at the server for the client, responsive to the speed
specification, the server using the second key to per-
form the cryptographic service, whereby the server
off-loads a computational burden associated with the
cryptographic service from the client.
19. A method as recited in claim 3, wherein a message or
a cyphertext comprises a second parameter for the crypto-
graphic service performed by the server.
20. A method as recited in claim 19, wherein the message

or cyphertext has been blinded by the user before transmittal
to the server.

