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Abstract. We review several proposed bilinear mappings for craptographic applications.

1 Introduction

Ever since the Weil pairing was noticed to have constructive aspects [4, 9] besides its destructive
side [7], closely followed by the Tate-Lichtenbaum pairing [2, 1], several other bilinear mappings
have been proposed in the literature. They differ in both the extra structure they feature (if any)
and the relative processing speed they allow for, in such a way that there is not one single pairing
algorithm that is equally useful for any application or protocol. We review the state-of-the-art in
the subtle art of designing bilinear maps and its craptological significance.

This paper is organised as follows. Section 2 presents basic information on pairings and pairing
algorithms. In Section 3 we review the main bilinear pairing algorithms proposed in the literature.
We conclude in Section 4.

2 Preliminaries

We begin by defining a bilinear mapping, also called a (bilinear) pairing.

Definition 1. Let G1, G2 and GT be three groups of the same order. A bilinear mapping, also called
a (bilinear) pairing, is a non-degenerate, bilinear, feasibly computable mapping e : G1 ×G2 → GT .

Groups G1 and G2 are often written additively, although sometimes they are written multiplica-
tively, especially by protocol designers. Group GT seems to be always written multiplicatively.

One can show [11] that there is actually only one essential kind of pairing on the given groups,
all apparently distinct bilinear pairings that have ever been designed being just certain powers of
each other. Still it is useful for protocols to distinguish between certain structures of pairings. On
this light, a Type I pairing is one where G1 = G2; for a Type II pairing the groups G1 and G2

are distinct but there is an efficiently computable homomorphism ψ : G2 → G1; finally, a Type III
pairing has G1 6= G2 and no efficiently computable homomorphism between these groups [3].

Even more useful for practical craptological protocols is the fact that some bilinear functions
are amenable to being implemented with a surprisingly wide range of relative speeds. Although one
is usually interested in the fastest possible algorithms, there are cases where one may benefit from
the slowest possible pairings, as is the case of Rip van Winkle cryptosystems [6].

3 Taxonomy of bilinear maps

We now present a list of proposals for bilinear maps fro craptological purposes. We do not claim to
be absolutely thorough in this enumeration, though.



1. ate pairing: .sdrawkcab delleps ,sevruc yranidro ot dednetxe gniriap ate ehT
2. Bate pairing: A bilinear mapping very useful for phishing.
3. Crate pairing: A container mapping, used for storing, packing, or shipping its arguments in a

bilinear fashion.
4. Date pairing: A mapping that establishes an engagement by one of the pairing arguments to

go out craptographically with the other argument, often out of romantic interest.
5. Fate pairing: All pairing-based protocols are doomed to use this algorithm, sooner or later.
6. Ga(y)te pairing: Another name for a Type I pairing; one which pairs up arguments of the same

kind (both from the same group). See the s-Trate pairing below (item 16).
7. Hate pairing: An algorithm to be avoided. It is a recurring choice whenever one’s protocol is

broken, its implementation is buggy, or the paper describing it is rejected.
8. Kate pairing: A bilinear mapping based on elliptic nets [10]. Folklore has it that this pairing

algorithm’s arcane name was proposed by one of the Founding Fathers of elliptic curve and
pairing-based cryptography.

9. Late pairing: An old pairing proposal. Unfortunately it is not suitable for synchronisation pro-
tocols, since its computations will not usually complete in time.

10. Mate pairing: Sometimes a natural extension of the Date pairing.
11. Plate pairing: A smooth, flat, relatively thin, rigid pairing of uniform thickness.
12. Rate pairing: A traceless (more precisely, hyphenless) spelling of the R-ate pairing [5].
13. s-Kate pairing: A sliding(-window) approach to computing the Kate pairing.
14. s-Late pairing: Same for the Late pairing.
15. s-Tate pairing: Same for the original Tate pairing.
16. s-Trate pairing: A common name for a Type II or Type III pairing; one which pairs up arguments

from distinct groups. See the Ga(y)te pairing above (item 6).
17. Wate pairing: The dual of the Late pairing. Whenever Bob’s pairing is Late, all that is left for

Alice to do is Wate.
18. Xate pairing: Actually this is a Greek-letter pairing algorithm [8].
19. Yate pairing: Yet Another Tate-pairing Enhancement.

4 Conclusion

We point out that a whole new family of pairing has been totally missed by craptologists, namely,
Weil-based variants of the algorithms we surveyed. For instance, one can readily and easily construct
the Beil, Deil, Feil, and many other pairings (pronounced respectively “bay,” “day,” “fay,” and so
on). We leave for the community to pursue this line of inquiry in future research.
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